FIXED POINT RECURSIVE ORDINAL FUNCTIONS

HANUL JEON

The initial motivation for this note is to formulate a natural class of ordinal functions including Veblen functions. I am planning to expand this note by adding the definition of 'fixed point recursive set function' that I am still working on. I welcome any comments or ideas.

1. FIXED POINT RECURSIVE ORDINAL FUNCTIONS

Definition 1.1. A class of *fixed point recursive ordinal function* (abbr. FPRO functions) is defined inductively as follows:

- (1) Projections, Identity, zero, the successor operator is FPRO.
- (2) The composition of FPRO functions is also FPRO.
- (3) (Primitive recursion) If f is FPRO, then so is g satisfying the following:

$$g(\alpha, \vec{\pi}) = f(\sup_{\xi < \alpha} g(\xi, \vec{\pi}), \vec{\pi}).$$

(4) (Fixed point recursion) If f is FPRO, then $\operatorname{Fix}_f = \varphi$ is also FPRO, where φ satisfies the following: For each α and β with a parameter $\vec{\pi}$, $\varphi(\alpha, \beta, \vec{\pi})$ is the β -th fixed point for functions $\vec{\zeta} \mapsto f(\vec{\zeta}, \vec{\pi})$ and $\eta \mapsto \varphi(\xi, \eta, \vec{\pi})$ for all $\xi < \alpha$.

Equivalently, $\varphi(\alpha, \beta, \vec{\pi})$ is the least ordinal γ satisfying the following:

- For each $\eta < \beta$, $\varphi(\alpha, \eta, \vec{\pi}) < \gamma$.
- If $\vec{\zeta} < \gamma$, then $f(\vec{\zeta}, \vec{\pi}) < \gamma$.
- If $\xi < \alpha$ and $\eta < \gamma$, then $\varphi(\xi, \eta, \vec{\pi}) < \gamma$.

Lemma 1.2. The Veblen function is FPRO.

Proof. Let φ be the function obtained from the successor function by the fixed point recursion. Then we can see that $\varphi(0,\xi)$ is the ξ th ordinal closed under the successor operator, so $\varphi(0,\xi) = \omega \cdot \xi$. Similarly, $\varphi(1,\xi)$ is the ξ th ordinal closed under $\eta \mapsto \omega \cdot \eta$, so $\varphi(1,\xi) = \omega^{\omega \cdot \xi}$ for $\xi \ge 1$. ($\varphi(1,0) = 0$.) By the same logic, we can see that $\varphi(2,\xi) = \varepsilon_{\xi}$, so we can see by induction that $\varphi(1 + \alpha, \beta) = \varphi_{\alpha}(\beta)$ for $\alpha \ge 1$.

FPRO functions can represent not only Veblen functions but also finitary Veblen functions:

Lemma 1.3. For each $n, (\xi_0, \dots, \xi_{n-1}) \mapsto \varphi(\xi_0, \dots, \xi_{n-1})$ is FPRO.

Proof. An essentially the same proof as the previous lemma works.

However, the expressive power of the FPRO function is bounded by finitary Veblen functions:

Proposition 1.4. Let f be an FPRO function. Then there is a natural number n such that for every $\alpha_0, \dots, \alpha_{k-1}$, we have

(1)
$$f(\alpha_0, \cdots \alpha_{k-1}) \le \varphi(\max(\alpha_0, \cdots, \alpha_{k-1}), \underbrace{0, \dots, 0}_{n \text{ times}}).$$

Proof. Let us follow the proof presented in [1]. We prove it by induction on FPRO functions, and ignore trivial cases. For a notational convenience, let us use the following convention:

$$\varphi\begin{pmatrix}\alpha\\n\end{pmatrix} = \varphi(\alpha, \underbrace{0, \dots, 0}_{n \text{ times}})$$

For composition, suppose that f, g_0, \dots, g_{m-1} be FPRO functions of arity m and suppose that they satisfy (1) by n. Then

$$f(g_0(\vec{\alpha}), \cdots, g_{m-1}(\vec{\alpha})) \le \varphi \binom{\max(g_0(\vec{\alpha}), \cdots, g_{m-1}(\vec{\alpha}))}{n}$$
$$\le \varphi \binom{\varphi \binom{\max \vec{\alpha}}{n}}{n} \le \varphi \binom{\max \vec{\alpha}}{n+1}.$$

For primitive recursion, suppose that f satisfies (1) by n, and let g be a function defined by primitive recursion by f with a parameter $\vec{\pi}$. Let us prove (1) by induction on α : Then we have

$$g(\alpha, \vec{\pi}) = f(\sup_{\xi < \alpha} g(\xi, \vec{\pi}), \vec{\pi}) \le \varphi \begin{pmatrix} \max(\sup_{\xi < \alpha} g(\xi, \vec{\pi}), \vec{\pi}) \\ n \end{pmatrix}$$
$$\le \varphi \begin{pmatrix} \max\left(\sup_{\xi < \alpha} \varphi \begin{pmatrix} \max(\xi, \vec{\pi}), \vec{\pi} \end{pmatrix} \\ n \end{pmatrix} \right) \le \varphi \begin{pmatrix} \max(\alpha, \vec{\pi}) \\ n \end{pmatrix}$$

The last inequality holds since $\varphi \binom{\max(\alpha, \vec{\pi})}{n+1}$ is greater than $\sup_{\xi < \max(\alpha, \vec{\pi})} \varphi \binom{\xi}{n+1}$ and is closed under the map $\varphi\binom{\cdot}{n}$.

Lastly, let f be FPRO and q be a function given by the fixed point recursion on f with parameter $\vec{\pi}$. Suppose that f satisfies (1) by n. Now let us prove the following inequality by induction on $(\alpha, \beta) \in \text{Ord}^2$ under the lexicographical order:

(2)
$$g(\alpha, \beta, \vec{\pi}) \le \varphi \binom{\max(\alpha, \beta, \vec{\pi})}{n+1}.$$

Suppose that (2) holds for all $(\xi, \eta) < (\alpha, \beta)$. Recall that $\gamma = g(\alpha, \beta, \vec{\pi})$ is the least ordinal satisfying the following:

- For each $\eta < \beta$, $g(\alpha, \eta, \vec{\pi}) < \gamma$.
- If ζ < γ, then f(ζ, π) < γ.
 If ξ < α and η < γ, then g(ξ, η, π) < γ.

Now we can see that $\delta = \varphi \begin{pmatrix} \max(\alpha, \beta, \vec{\pi}) \\ n+1 \end{pmatrix}$ satisfies the following:

- For each $\eta < \beta$, $\varphi(\max(\alpha, \eta, \vec{\pi})) < \delta$. If $\vec{\zeta} < \delta$, then $\varphi(\max(\vec{\zeta}, \vec{\pi})) < \delta$. If $\xi < \alpha$ and $\eta < \delta$, then $\varphi(\max(\xi, \eta, \vec{\pi})) < \delta$.

By the inductive assumption, we have (2) for (α, η) for all $\eta < \beta$, or (ξ, η) for every $\xi < \alpha$ and $\eta \in \text{Ord.}$ Hence we get $\gamma \leq \delta$. \square

However, we have not proved that FPRO functions are total. It turns out that KP_0 with Π_2 -Set Induction proves every FPRO function terminates, where KP_0 is KP with Set Induction restricted to bounded formulas. Before jumping into the problem, let us provide the following useful characterization of Π_n -Set Induction, which says it allows us to induct over a certain type of class well-order:

Proposition 1.5 ([4, Lemma 4.4]). Let $E_0 = \varepsilon_{\text{Ord}+1}$ be a class order for the least epsilon number greater than Ord. (See Definition 4.1 of [4] for the details.) Then we have the following:

- (1) KP_0 with Σ_1 -Set Induction proves E_0 is linear.
- (2) Working over KP_0 with Π_n -Set Induction, let A(x) be a Π_n -formula. If we have

 $\forall s \in E_0[((\forall t <_{E_0} s A(t)) \to A(s)) \to A(s)],$

then for every (standard) natural number k, we have

$$\forall s \in E_0[(\forall t <_{E_0} s \ A(t)) \to (\forall t <_{E_0} s + \operatorname{Ord}^k A(t))].$$

Hence we have the following:

Corollary 1.6. KP_0 with Π_2 -Set Induction proves the Π_2 -induction over Ord^k for each (standard) natural $number \ k.$

Proposition 1.7. KP₀ with Π_2 -Set Induction proves the following: The class of Σ_1 -definable functions is closed under fixed point recursion on ordinals.

To show Proposition 1.7, we need to find a Σ_1 -formula defining a fixed point recursion of a Σ_1 -definable function. It involves the following variant of Gödel's diagonal lemma:

Lemma 1.8. Let $\phi(n, x)$ be a Σ_1 -formula. Then we can find a Σ_1 -formula ψ such that

$$\mathsf{PRS} \vdash \forall x [\psi(x) \leftrightarrow \phi(\ulcorner \psi \urcorner, x)]$$

Proof. Consider the following computable function for formulas θ with two free variables:

$$d(\ulcorner \theta \urcorner) = \ulcorner \theta(\ulcorner \theta \urcorner, x) \urcorner$$

Here <u>n</u> means the numeral for n, i.e., the symbol for $1 + \cdots + 1$ with n many 1. d is computable, so it is Δ_0 -definable with a parameter ω over PRS. Now for a given Σ_1 -formula $\phi(n, x)$, let $\phi'(n, x)$ be a Σ_1 -formula that is PRS-provably equivalent to

$$\exists m < \omega(d(n) = m \land \phi(m, x)).^{1}$$

Then for every Σ_1 -formula θ with two variables we have

$$\mathsf{PRS} \vdash \phi'(\underline{\ulcorner}\theta\underline{\urcorner}, x) \leftrightarrow \phi(\ulcorner\theta(\underline{\ulcorner}\theta\underline{\urcorner}, x)\underline{\urcorner}, x).$$

Now take $\theta \equiv \phi'$, and let $\psi(x) \equiv \phi'(\ulcorner \phi' \urcorner, x)$. Then we get

$$\mathsf{PRS} \vdash \psi(x) \leftrightarrow \phi(\ulcorner \psi \urcorner, x).$$

Since x occurs free, we have the desired result by universal generalization.

Proof of Proposition 1.7. We will prove the following: Let f be a Σ_1 -definable function on ordinals and $\vec{\pi}$ be parameter ordinals. Then we can find a Σ_1 -definable class function φ on ordinals satisfying the definition of fixed point recursion on f and $\vec{\pi}$.

We want to find a Σ_1 -formula $\psi(\alpha, \beta, \vec{\pi}, \gamma)$ defining φ . Then ψ must satisfy the following: $\psi(\alpha, \beta, \vec{\pi}, \gamma)$ holds if and only if γ is the least ordinal satisfying the conjunction of the following:

- (1) For every $\eta < \beta$, there is $\nu < \gamma$ such that $\psi(\alpha, \eta, \vec{\pi}, \nu)$.
- (2) For every $\vec{\zeta} < \eta$, we have $f(\vec{\zeta}, \vec{\pi}) < \gamma$.
- (3) For every $\xi < \alpha$ and $\eta < \gamma$, there is $\nu < \gamma$ such that $\psi(\xi, \eta, \vec{\pi}, \nu)$.

The above statement looks complex, but it is a rephrase of the statement ' ψ defines a fixed point recursion of f.' Also, ν always means the value of φ for some input in the above formulas.

We can see that the first and the third expressions only involve bounded quantifiers. The second expression is more subtle because f is Σ_1 -definable and not Δ_0 -definable. However, observe that the expression $f(\vec{\xi}, \vec{\pi}) < \gamma$ is provably Δ_1 over KP₁ + Σ_1 -Set Induction because it is equivalent to one of the following:

- For every ν , if $f(\vec{\xi}, \vec{\pi}) = \nu$ then $\nu < \gamma$.
- There is ν such that $f(\vec{\xi}, \vec{\pi}) = \nu$ and $\nu < \gamma$.

Here $f(\vec{\xi}, \vec{\pi}) = \nu$ should be understood as a Σ_1 -definition of f, so each formulas are Π_1 and Σ_1 respectively. To find the desired ψ , consider the following template formula $\phi(\ulcorner θ \urcorner, \alpha, \beta, \vec{\pi}, \gamma)$ that is the conjunction of

the following, which is obtained from the condition for ψ by replacing all occurrences of ψ with $\models_{\Sigma_1} \ulcorner \theta \urcorner$.

- (1) For every $\eta < \beta$, there is $\nu < \gamma$ such that $\vDash_{\Sigma_1} \ulcorner \theta \urcorner (\alpha, \eta, \vec{\pi}, \nu)$.
- (2) For every $\vec{\zeta} < \eta$, we have $f(\vec{\zeta}, \vec{\pi}) < \gamma$.
- (3) For every $\xi < \alpha$ and $\eta < \gamma$, there is $\nu < \gamma$ such that $\vDash_{\Sigma_1} \ulcorner \theta \urcorner (\xi, \eta, \vec{\pi}, \nu)$.
- (4) For every $\delta < \gamma$, we have one of the following:
 - (a) There is $\eta < \beta$ such that for every $\nu < \delta$, we can find μ such that $\models_{\Sigma_1} \ulcorner θ \urcorner (\alpha, \eta, \vec{\pi}, \mu)$ and $\mu \neq \nu$, or
 - (b) There is $\vec{\zeta} < \eta$ such that $f(\vec{\zeta}, \vec{\pi}) \ge \delta$, or
 - (c) There is $\xi < \alpha$ and $\eta < \delta$ such that for every $\nu < \delta$, we have μ such that $\models_{\Sigma_1} \ulcorner \theta \urcorner (\xi, \eta, \vec{\pi}, \mu)$ and $\mu \neq \nu$.

¹I suspect it works even over a weaker fragment of set theory, like provident set theory.

HANUL JEON

The reader may wonder why the last three formulas do not use a more direct expression $\vDash_{\Sigma_1} \ulcorner θ \urcorner$. However, $\models_{\Sigma_1} \ulcorner \theta \urcorner$ is a Π_1 -expression and we want to have its Σ_1 -form. There is no way to express $\models_{\Sigma_1} \ulcorner \theta \urcorner$ in a Σ_1 -way, but observe that our formula ψ will define a function. This means we will have the following equivalence:

$$\psi(\alpha,\beta,\vec{\pi},\gamma) \iff \forall \mu[\psi(\alpha,\beta,\vec{\pi},\mu) \to \gamma = \mu].$$

If ψ is Σ_1 , then the latter is Π_1 . Thus we can use the negation of

$$\forall \mu[\psi(\alpha,\beta,\vec{\pi},\mu) \to \gamma = \mu]$$

as a substitute of $\neg \psi$. Also, the template formula ϕ is a Σ -formula. However, we can find its Σ_1 -equivalence due to Σ_1 -Collection, so we can conflate ϕ with its Σ_1 -equivalence.

Now apply Lemma 1.8 to ϕ to get a Σ_1 -formula ψ trying to define the fixed point iteration of f. Now we claim by induction on $\operatorname{Ord} \cdot \alpha + \beta$ that $\exists \gamma \psi(\alpha, \beta, \vec{\pi}, \gamma)$ holds.

Suppose that $\exists \gamma \psi(\xi, \eta, \vec{\pi}, \gamma)$ holds for all $(\operatorname{Ord} \cdot \xi + \eta) < (\operatorname{Ord} \cdot \alpha + \beta)$. By the inductive assumption, we have defined

- $\varphi(\xi, \eta, \vec{\pi})$ for every $\xi < \alpha$ and $\eta \in \text{Ord.}$
- $\varphi(\alpha, \eta, \vec{\pi})$ for every $\eta < \beta$.

via a Σ_1 -formula ψ . By Σ_1 -Replacement, $\gamma_0 = \sup\{\varphi(\alpha, \eta, \vec{\pi}) \mid \eta < \beta\}$ is a set. By the usual Σ_1 -recursion, define

$$\gamma_{n+1} = \sup(\{\varphi(\xi, \eta, \vec{\pi}) \mid \xi < \alpha \land \eta < \gamma_n\} \cup \{f(\vec{\eta}, \vec{\pi}) \mid \eta < \gamma_n\})$$

and take $\gamma = \sup_{n < \omega} \gamma_n$. Then γ satisfies $\psi(\alpha, \beta, \vec{\pi}, \gamma)$.

2. FIXED POINT RECURSION WITH DILATOR PARAMETERS

Is there any way to get ordinal functions to grow faster than ordinal functions obtained by fixed point recursion? It turns out that dilator-based iteration gives such functions. I will assume the familiarity with dilators. The reader may refer to [2] or [3] to learn about dilators. I will define an iteration scheme, but not prove its convergence.

Definition 2.1. For an ordinal function f and a dilator D, let us define Iter_{f}^{D} recursively as follows:

(1) $\operatorname{Iter}_{\overline{f}}^{\underline{0}}(\alpha) = \alpha.$

- (1) $\operatorname{Iter}_{f}(\alpha) = \alpha$. (2) $\operatorname{Iter}_{f}^{D+1}(\alpha) = f(\operatorname{Iter}_{f}^{D}(\alpha))$. (3) $\operatorname{Iter}_{f}^{\sum_{\xi < \beta} D_{\beta}}(\alpha) = \sup_{\xi < \beta} \operatorname{Iter}_{f}^{\sum_{\eta < \xi} D_{\eta}}(\alpha)$ if $D_{\xi} \neq \underline{0}$ for all $\xi < \beta$. (4) If D' is a perfect dilator, then $f^{D+D'}(\alpha)$ is the least ordinal γ greater than all of $f^{D+D'}(\beta)$ for all $\beta < \alpha$ and closed under $f^{D + \mathsf{Sep}(D')(\xi, \cdot)}$ for all $\xi < \gamma$.

Example 2.2. Let S be the successor function, i.e., $S(\alpha) = \alpha + 1$. Then we have

$$\mathsf{Iter}_{\overline{S}}^{\underline{\beta}}(\alpha) = \alpha + \beta.$$

Also, $\mathsf{Iter}^{\mathsf{Id}}_{S}(\alpha)$ is the least ordinal γ greater than all of $\mathsf{Iter}^{\mathsf{Id}}_{S}(\beta)$ for all $\beta < \alpha$ closed under the addition. Hence $\operatorname{Iter}_{S}^{\operatorname{Id}}(\alpha) = \omega^{\alpha}$ for $\alpha \geq 1$. ($\operatorname{Iter}_{S}^{\operatorname{Id}}(0) = 0$.) Similarly, we have that $\operatorname{Iter}_{S}^{\operatorname{Id}+\operatorname{Id}}(1+\alpha) = \varepsilon_{\alpha}$, $\operatorname{Iter}_{S}^{\operatorname{Id}+\operatorname{Id}+\operatorname{Id}}(1+\alpha) = \varepsilon_{\alpha}$. $\varphi_2(\alpha)$, and so on. (Remind that $\mathsf{Sep}(\mathsf{Id})(\alpha,\beta) = \alpha$.) In general, we have

$$\operatorname{Iter}_{S}^{\operatorname{Id} \cdot (1+\alpha)}(1+\beta) = \varphi(\alpha,\beta).$$

Then what is $\operatorname{Iter}_{S}^{\operatorname{Id}^{2}}(\alpha)$? Well, $\gamma = \operatorname{Iter}_{S}^{\operatorname{Id}^{2}}(\alpha)$ must be closed under $\varphi(\beta, \cdot)$ for all $\beta < \gamma$, so we can guess $\operatorname{Iter}_{S}^{\operatorname{Id}^{2}}(1+\alpha) = \varphi(1,0,\alpha)$. In general, we get

$$\operatorname{Iter}_{S}^{\operatorname{Id}^{e_{0}} \cdot \underline{\alpha_{0}} + \cdots \operatorname{Id}^{e_{n}} \cdot \underline{\alpha_{n}}}(1+\beta) = \varphi \begin{pmatrix} \alpha_{0} & \cdots & \alpha_{n} & \beta \\ e_{0} & \cdots & e_{n} & 0 \end{pmatrix}$$

We may push it further: $\operatorname{Iter}_{S}^{(1+\operatorname{Id})^{\operatorname{Id}}}(1+\beta)$ will be a fixed point for transfinite Veblen functions. I guess $\operatorname{Iter}_{S}^{D}$ is closely related to the ordinal collapsing function ψ_{Ω} , and if ε_{X} is the dilator returning the epsilon number, then $\operatorname{Iter}_{S}^{\varepsilon_{1+\operatorname{Id}}}(1)$ is the proof-theoretic ordinal of KP.

I guess reaching an ordinal at the level of the proof-theoretic ordinal of ID_2 (or around $\psi_{\Omega}(\varepsilon_{\Omega_2+1})$) requires recursion on ptykes of type Dil \rightarrow Dil, i.e., For a ptyx P: Dil \rightarrow Dil, and a dilator D, we need to define a new ptyx $|\text{ter}_P^D: \text{Dil} \to \text{Dil}$. It seems to me that Girard's ptyx Λ describes something relevant.

REFERENCES

References

- Jeremy Avigad. "An ordinal analysis of admissible set theory using recursion on ordinal notations". In: J. Math. Log. 2.1 (2002), pp. 91–112. ISSN: 0219-0613,1793-6691. DOI: 10.1142/S0219061302000126. URL: https://doi.org/10.1142/S0219061302000126.
- [2] Jean-Yves Girard. "Π¹₂-logic. I. Dilators". In: Ann. Math. Logic 21.2-3 (1981), pp. 75–219.
- [3] Jean-Yves Girard. "Proof theory and logical complexity II". Unpublished manuscript. URL: https://girard.perso.math.cnrs.fr/ptlc2.pdf.
- [4] Michael Rathjen. "Fragments of Kripke-Platek set theory with infinity". In: Proof theory (Leeds, 1990). Cambridge Univ. Press, Cambridge, 1992, pp. 251–273. ISBN: 0-521-41413-X.

Email address: hj344@cornell.edu URL: https://hanuljeon95.github.io

Department of Mathematics, Cornell University, Ithaca, NY 14853 $\,$