
FIXED POINT RECURSIVE ORDINAL FUNCTIONS

HANUL JEON

The initial motivation for this note is to formulate a natural class of ordinal functions including Veblen
functions. I am planning to expand this note by adding the definition of ‘fixed point recursive set function’
that I am still working on. I welcome any comments or ideas.

1. Fixed point recursive ordinal functions

Definition 1.1. A class of fixed point recursive ordinal function (abbr. FPRO functions) is defined induc-
tively as follows:

(1) Projections, Identity, zero, the successor operator is FPRO.
(2) The composition of FPRO functions is also FPRO.
(3) (Primitive recursion) If f is FPRO, then so is g satisfying the following:

g(α, π⃗) = f(sup
ξ<α

g(ξ, π⃗), π⃗).

(4) (Fixed point recursion) If f is FPRO, then Fixf = φ is also FPRO, where φ satisfies the following:
For each α and β with a parameter π⃗, φ(α, β, π⃗) is the β-th fixed point for functions ζ⃗ 7→ f(ζ⃗, π⃗)
and η 7→ φ(ξ, η, π⃗) for all ξ < α.

Equivalently, φ(α, β, π⃗) is the least ordinal γ satisfying the following:
• For each η < β, φ(α, η, π⃗) < γ.
• If ζ⃗ < γ, then f(ζ⃗, π⃗) < γ.
• If ξ < α and η < γ, then φ(ξ, η, π⃗) < γ.

Lemma 1.2. The Veblen function is FPRO.

Proof. Let φ be the function obtained from the succcessor function by the fixed point recursion. Then we
can see that φ(0, ξ) is the ξth ordinal closed under the successor operator, so φ(0, ξ) = ω ·ξ. Similarly, φ(1, ξ)
is the ξth ordinal closed under η 7→ ω · η, so φ(1, ξ) = ωω·ξ for ξ ≥ 1. (φ(1, 0) = 0.) By the same logic, we
can see that φ(2, ξ) = εξ, so we can see by induction that φ(1 + α, β) = φα(β) for α ≥ 1. □

FPRO functions can represent not only Veblen functions but also finitary Veblen functions:

Lemma 1.3. For each n, (ξ0, · · · , ξn−1) 7→ φ(ξ0, · · · , ξn−1) is FPRO.

Proof. An essentially the same proof as the previous lemma works. □

However, the expressive power of the FPRO function is bounded by finitary Veblen functions:

Proposition 1.4. Let f be an FPRO function. Then there is a natural number n such that for every
α0, · · ·αk−1, we have

(1) f(α0, · · ·αk−1) ≤ φ(max(α0, · · · , αk−1), 0, . . . , 0︸ ︷︷ ︸
n times

).

Proof. Let us follow the proof presented in [1]. We prove it by induction on FPRO functions, and ignore
trivial cases. For a notational convenience, let us use the following convention:

φ

(
α

n

)
= φ(α, 0, . . . , 0︸ ︷︷ ︸

n times

)

1
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For composition, suppose that f , g0, · · · , gm−1 be FPRO functions of arity m and suppose that they
satisfy (1) by n. Then

f(g0(α⃗), · · · , gm−1(α⃗)) ≤ φ

(
max(g0(α⃗), · · · , gm−1(α⃗))

n

)
≤ φ

(
φ
(
max α⃗

n

)
n

)
≤ φ

(
max α⃗

n+ 1

)
.

For primitive recursion, suppose that f satisfies (1) by n, and let g be a function defined by primitive
recursion by f with a parameter π⃗. Let us prove (1) by induction on α: Then we have

g(α, π⃗) = f(sup
ξ<α

g(ξ, π⃗), π⃗) ≤ φ

(
max(supξ<α g(ξ, π⃗), π⃗)

n

)

≤ φ

(
max

(
supξ<α φ

(
max(ξ,π⃗)

n+1

)
, π⃗

)
n

)
≤ φ

(
max(α, π⃗))

n+ 1

)
The last inequality holds since φ

(
max(α,π⃗))

n+1

)
is greater than supξ<max(α,π⃗) φ

(
ξ

n+1

)
and is closed under the map

φ
( ·
n

)
.

Lastly, let f be FPRO and g be a function given by the fixed point recursion on f with parameter π⃗.
Suppose that f satisfies (1) by n. Now let us prove the following inequality by induction on (α, β) ∈ Ord2

under the lexicographical order:

(2) g(α, β, π⃗) ≤ φ

(
max(α, β, π⃗)

n+ 1

)
.

Suppose that (2) holds for all (ξ, η) < (α, β). Recall that γ = g(α, β, π⃗) is the least ordinal satisfying the
following:

• For each η < β, g(α, η, π⃗) < γ.
• If ζ⃗ < γ, then f(ζ⃗, π⃗) < γ.
• If ξ < α and η < γ, then g(ξ, η, π⃗) < γ.

Now we can see that δ = φ
(
max(α,β,π⃗)

n+1

)
satisfies the following:

• For each η < β, φ
(
max(α,η,π⃗)

n+1

)
< δ.

• If ζ⃗ < δ, then φ
(
max(ζ⃗,π⃗)

n

)
< δ.

• If ξ < α and η < δ, then φ
(
max(ξ,η,π⃗)

n+1

)
< δ.

By the inductive assumption, we have (2) for (α, η) for all η < β, or (ξ, η) for every ξ < α and η ∈ Ord.
Hence we get γ ≤ δ. □

However, we have not proved that FPRO functions are total. It turns out that KP0 with Π2-Set Induction
proves every FPRO function terminates, where KP0 is KP with Set Induction restricted to bounded formulas.
Before jumping into the problem, let us provide the following useful characterization of Πn-Set Induction,
which says it allows us to induct over a certain type of class well-order:

Proposition 1.5 ([4, Lemma 4.4]). Let E0 = εOrd+1 be a class order for the least epsilon number greater
than Ord. (See Definition 4.1 of [4] for the details.) Then we have the following:

(1) KP0 with Σ1-Set Induction proves E0 is linear.
(2) Working over KP0 with Πn-Set Induction, let A(x) be a Πn-formula. If we have

∀s ∈ E0[((∀t <E0 s A(t)) → A(s)) → A(s)],

then for every (standard) natural number k, we have

∀s ∈ E0[(∀t <E0 s A(t)) → (∀t <E0 s+Ordk A(t))].

Hence we have the following:

Corollary 1.6. KP0 with Π2-Set Induction proves the Π2-induction over Ordk for each (standard) natural
number k.
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Proposition 1.7. KP0 with Π2-Set Induction proves the following: The class of Σ1-definable functions is
closed under fixed point recursion on ordinals.

To show Proposition 1.7, we need to find a Σ1-formula defining a fixed point recursion of a Σ1-definable
function. It involves the following variant of Gödel’s diagonal lemma:

Lemma 1.8. Let ϕ(n, x) be a Σ1-formula. Then we can find a Σ1-formula ψ such that

PRS ⊢ ∀x[ψ(x) ↔ ϕ(⌜ψ⌝, x)].

Proof. Consider the following computable function for formulas θ with two free variables:

d(⌜θ⌝) = ⌜θ(⌜θ⌝, x)⌝

Here n means the numeral for n, i.e., the symbol for 1 + · · · + 1 with n many 1. d is computable, so it is
∆0-definable with a parameter ω over PRS. Now for a given Σ1-formula ϕ(n, x), let ϕ′(n, x) be a Σ1-formula
that is PRS-provably equivalent to

∃m < ω(d(n) = m ∧ ϕ(m,x)).1

Then for every Σ1-formula θ with two variables we have

PRS ⊢ ϕ′(⌜θ⌝, x) ↔ ϕ(⌜θ(⌜θ⌝, x)⌝, x).

Now take θ ≡ ϕ′, and let ψ(x) ≡ ϕ′(⌜ϕ′⌝, x). Then we get

PRS ⊢ ψ(x) ↔ ϕ(⌜ψ⌝, x).

Since x occurs free, we have the desired result by universal generalization. □

Proof of Proposition 1.7. We will prove the following: Let f be a Σ1-definable function on ordinals and π⃗
be parameter ordinals. Then we can find a Σ1-definable class function φ on ordinals satisfying the definition
of fixed point recursion on f and π⃗.

We want to find a Σ1-formula ψ(α, β, π⃗, γ) defining φ. Then ψ must satisfy the following: ψ(α, β, π⃗, γ)
holds if and only if γ is the least ordinal satisfying the conjunction of the following:

(1) For every η < β, there is ν < γ such that ψ(α, η, π⃗, ν).
(2) For every ζ⃗ < η, we have f(ζ⃗, π⃗) < γ.
(3) For every ξ < α and η < γ, there is ν < γ such that ψ(ξ, η, π⃗, ν).

The above statement looks complex, but it is a rephrase of the statement ‘ψ defines a fixed point recursion
of f .’ Also, ν always means the value of φ for some input in the above formulas.

We can see that the first and the third expressions only involve bounded quantifiers. The second expression
is more subtle because f is Σ1-definable and not ∆0-definable. However, observe that the expression f(ξ⃗, π⃗) <
γ is provably ∆1 over KP1 + Σ1-Set Induction because it is equivalent to one of the following:

• For every ν, if f(ξ⃗, π⃗) = ν then ν < γ.
• There is ν such that f(ξ⃗, π⃗) = ν and ν < γ.

Here f(ξ⃗, π⃗) = ν should be understood as a Σ1-definition of f , so each formulas are Π1 and Σ1 respectively.
To find the desired ψ, consider the following template formula ϕ(⌜θ⌝, α, β, π⃗, γ) that is the conjunction of

the following, which is obtained from the condition for ψ by replacing all occurrences of ψ with ⊨Σ1 ⌜θ⌝.
(1) For every η < β, there is ν < γ such that ⊨Σ1 ⌜θ⌝(α, η, π⃗, ν).
(2) For every ζ⃗ < η, we have f(ζ⃗, π⃗) < γ.
(3) For every ξ < α and η < γ, there is ν < γ such that ⊨Σ1

⌜θ⌝(ξ, η, π⃗, ν).
(4) For every δ < γ, we have one of the following:

(a) There is η < β such that for every ν < δ, we can find µ such that ⊨Σ1 ⌜θ⌝(α, η, π⃗, µ) and µ ̸= ν,
or

(b) There is ζ⃗ < η such that f(ζ⃗, π⃗) ≥ δ, or
(c) There is ξ < α and η < δ such that for every ν < δ, we have µ such that ⊨Σ1

⌜θ⌝(ξ, η, π⃗, µ) and
µ ̸= ν.

1I suspect it works even over a weaker fragment of set theory, like provident set theory.
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The reader may wonder why the last three formulas do not use a more direct expression ⊨Σ1 ⌜θ⌝. However,
⊨Σ1 ⌜θ⌝ is a Π1-expression and we want to have its Σ1-form. There is no way to express ⊨Σ1 ⌜θ⌝ in a Σ1-way,
but observe that our formula ψ will define a function. This means we will have the following equivalence:

ψ(α, β, π⃗, γ) ⇐⇒ ∀µ[ψ(α, β, π⃗, µ) → γ = µ].

If ψ is Σ1, then the latter is Π1. Thus we can use the negation of

∀µ[ψ(α, β, π⃗, µ) → γ = µ]

as a substitute of ¬ψ. Also, the template formula ϕ is a Σ-formula. However, we can find its Σ1-equivalence
due to Σ1-Collection, so we can conflate ϕ with its Σ1-equivalence.

Now apply Lemma 1.8 to ϕ to get a Σ1-formula ψ trying to define the fixed point iteration of f . Now we
claim by induction on Ord · α+ β that ∃γψ(α, β, π⃗, γ) holds.

Suppose that ∃γψ(ξ, η, π⃗, γ) holds for all (Ord · ξ + η) < (Ord · α+ β). By the inductive assumption, we
have defined

• φ(ξ, η, π⃗) for every ξ < α and η ∈ Ord.
• φ(α, η, π⃗) for every η < β.

via a Σ1-formula ψ. By Σ1-Replacement, γ0 = sup{φ(α, η, π⃗) | η < β} is a set. By the usual Σ1-recursion,
define

γn+1 = sup({φ(ξ, η, π⃗) | ξ < α ∧ η < γn} ∪ {f(η⃗, π⃗) | η < γn})
and take γ = supn<ω γn. Then γ satisfies ψ(α, β, π⃗, γ). □

2. Fixed point recursion with dilator parameters

Is there any way to get ordinal functions to grow faster than ordinal functions obtained by fixed point
recursion? It turns out that dilator-based iteration gives such functions. I will assume the familiarity with
dilators. The reader may refer to [2] or [3] to learn about dilators. I will define an iteration scheme, but not
prove its convergence.

Definition 2.1. For an ordinal function f and a dilator D, let us define IterDf recursively as follows:

(1) Iter
0
f (α) = α.

(2) Iter
D+1
f (α) = f(IterDf (α)).

(3) Iter
∑

ξ<β Dβ

f (α) = supξ<β Iter
∑

η<ξ Dη

f (α) if Dξ ̸= 0 for all ξ < β.
(4) If D′ is a perfect dilator, then fD+D′

(α) is the least ordinal γ greater than all of fD+D′
(β) for all

β < α and closed under fD+Sep(D′)(ξ,·) for all ξ < γ.

Example 2.2. Let S be the successor function, i.e., S(α) = α+ 1. Then we have

Iter
β

S(α) = α+ β.

Also, IterIdS (α) is the least ordinal γ greater than all of IterIdS (β) for all β < α closed under the addition. Hence
IterIdS (α) = ωα for α ≥ 1. (IterIdS (0) = 0.) Similarly, we have that IterId+Id

S (1 + α) = εα, IterId+Id+Id
S (1 + α) =

φ2(α), and so on. (Remind that Sep(Id)(α, β) = α.) In general, we have

Iter
Id·(1+α)

S (1 + β) = φ(α, β).

Then what is IterId
2

S (α)? Well, γ = IterId
2

S (α) must be closed under φ(β, ·) for all β < γ, so we can guess
IterId

2

S (1 + α) = φ(1, 0, α). In general, we get

Iter
Ide0 ·α0+···Iden ·αn

S (1 + β) = φ

(
α0 · · · αn β
e0 · · · en 0

)
.

We may push it further: Iter
(1+Id)Id

S (1 + β) will be a fixed point for transfinite Veblen functions. I guess
IterDS is closely related to the ordinal collapsing function ψΩ, and if εX is the dilator returning the epsilon
number, then Iter

ε1+Id

S (1) is the proof-theoretic ordinal of KP.

I guess reaching an ordinal at the level of the proof-theoretic ordinal of ID2 (or around ψΩ(εΩ2+1)) requires
recursion on ptykes of type Dil → Dil, i.e., For a ptyx P : Dil → Dil, and a dilator D, we need to define a new
ptyx IterDP : Dil → Dil. It seems to me that Girard’s ptyx Λ describes something relevant.
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