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Set theory and arithmetic

Peano arithmetic PA (Peano 1889)

Zermelo-Fraenkel set theory ZF (Zermelo 1908, Fraenkel and
Skolem 1922)

Both theories provide a foundation for mathematics, but PA is
incapable of representing an actual infinity.
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Set theory and arithmetic, constructively

Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)

Heyting arithmetic HA (Heyting 1930)

Intuitionistic set theory IZF (Friedman 1973)

Constructive set theory CZF (Aczel 1978)
HA + Excluded Middle = PA
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Differences between IZF and CZF

IZF

1 Full separation

2 Powerset

3 Impredicative

4 Equiconsistent with ZF

CZF

1 Bounded separation

2 Subset collection

3 Allows type-theoretic
interpretation

4 Far more weaker than ZF
and more...
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Ackermann’s intrepretation

Question

Is there any relationship between PA and ZF?

Theorem (Ackermann 1937)

PA can interpret ZF without Infinity.

Theorem (Kaye and Wong 2007)

PA is bi-interpretable with ZFfin.

Here ZFfin = (ZF − Infinity) + ¬Infinity + ∀x∃TC (x).
(Alternatively, ∈-induction instead of ∀x∃TC (x).)
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Ackermann’s intrepretation, constructively?

Question

Is there any relationship between HA and some set theory?

Unlike classical case, we have at least two candidates: IZFfin

and CZFfin.

Theorem (McCarty and Shapiro, J.)

HA is bi-interpretable with CZFfin.
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Heyting arithmetic

Definition (Heyting arithmetic)

Language = {0, S , <,+, ·}
Axioms:

1 S is injective,

2 Every natural number is 0 or a successor,

3 Defining formulas for +, ·, <, and

4 The Induction scheme: if φ(0) and φ(n)→ φ(Sn) for all n,
then ∀nφ(n)
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Theorem (Recursion theorem)

Let f (·) and g(·, ·) be definable functions. Then we can also define
h satisfying the following conditions:

1 h(0, y) = f (y), and

2 h(Sx , y) = g(h(x , y), y).

Theorem

If φ(x) is a bounded formula, i.e., every quantifier of φ(x) is of the
form

(∀x < a) ≡ (∀x : x < a→ · · · ), or

(∃x < a) ≡ (∃x : x < a ∧ · · · ),

then φ(x) ∨ ¬φ(x).
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Axioms of ZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a↔ x ∈ b),

2 Pairing: {a, b} exists,

3 Union:
⋃
a exists,

4 Separation: {x ∈ a | φ(x)} exists,

5 Replacement: {F (x) | x ∈ a} exists if F is a class function,

6 Power set: P(a) = {x | x ⊆ a} exists,

7 Regularity: every set has a ∈-minimal element,

8 Infinity: N exists.
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Axioms of IZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a↔ x ∈ b),

2 Pairing: {a, b} exists,

3 Union:
⋃
a exists,

4 Separation: {x ∈ a | φ(x)} exists,

5 Collection: if ∀x ∈ a∃yφ(x , y), then there is b such that
∀x ∈ a∃y ∈ bφ(x , y)

6 Power set: P(a) = {x | x ⊆ a} exists,

7 Set Induction: ∀a[[∀x ∈ aφ(x)]→ φ(a)]→ ∀aφ(a)

8 Infinity: N exists.
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Axioms of CZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a↔ x ∈ b),

2 Pairing: {a, b} exists,

3 Union:
⋃
a exists,

4 Bounded Separation: {x ∈ a | φ(x)} exists if φ is bounded,

5 Strong Collection: if ∀x ∈ a∃yφ(x , y), then there is b such
that ∀x ∈ a∃y ∈ bφ(x , y) and ∀y ∈ b∃x ∈ aφ(x , y),

6 Subset Collection: There is a full subset of mv(a, b),

7 Set Induction: ∀a[[∀x ∈ aφ(x)]→ φ(a)]→ ∀aφ(a)

8 Infinity: N exists.
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Axioms of CZFfin

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a↔ x ∈ b),

2 Pairing: {a, b} exists,

3 Union:
⋃
a exists,

4 Bounded Separation: {x ∈ a | φ(x)} exists if φ is bounded,

5 Strong Collection: if ∀x ∈ a∃yφ(x , y), then there is b such
that ∀x ∈ a∃y ∈ bφ(x , y) and ∀y ∈ b∃x ∈ aφ(x , y),

6 Subset Collection: There is a full subset of mv(a, b),

7 Set Induction: ∀a[[∀x ∈ aφ(x)]→ φ(a)]→ ∀aφ(a)

8 V=Fin: every set is finite
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Simplified axioms of CZFfin

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a↔ x ∈ b),

2 Pairing: {a, b} exists,

3 Union:
⋃
a exists,

4 Binary intersection: a ∩ b exists,

5 Strong Collection: if ∀x ∈ a∃yφ(x , y), then there is b such
that ∀x ∈ a∃y ∈ bφ(x , y) and ∀y ∈ b∃x ∈ aφ(x , y),

6 Subset Collection: There is a full subset of mv(a, b),

7 Set Induction: ∀a[[∀x ∈ aφ(x)]→ φ(a)]→ ∀aφ(a)

8 V=Fin: every set is finite
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Consequences of simplified CZFfin, T

Definition

Let T be a theory comprises Extensionality, Pairing, Union, Binary
intersection, Set Induction and V=Fin.

Then T proves the following theorems:

Theorem (Primitive recursion over natural numbers)

Let A and B be classes and F : B → A, G : B × N× A→ A be
class functions. Then there is a definable class function
H : B × N→ A such that

1 H(b, 0) = F (b), and

2 H(b, Sn) = G (b, n,H(b, n)).
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Theorem (Set recursion)

Let G : V n+2 → V be an (n + 2)-ary class function. Then there is
a (n + 1)-ary class function F such that

F (~x , y) = G (~x , y , 〈F (~x , z) | z ∈ y〉).

Theorem (Bounded Excluded middle)

Let φ(x) be a bounded formula, i.e., every quantifier is of the form
∀x ∈ y or ∃x ∈ y, we have φ(x) ∨ ¬φ(x).

Theorem

T proves Strong Collection, Subset Collection and Powerset.
Moreover, CZFfin and T prove the same sentences.
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Interpretation

There are various possible formulations of interpretations. However,
we will only consider the following form of interpretations:

Definition

Let Ti (i = 0, 1) be theories over languages Li . Then the map
t : ϕ 7→ ϕt, which sends L0-formulas to L1-formulas, is an
interpretation from T0 to T1 (notation: t : T0 → T1) if the
following holds:

There is a L1-formula π∀(x) (domain of T0) such that
T1 ` ∃xπ∀(x),

For each n-ary function symbol f of L0, there is a (n + 1)-ary
formula πf (~x , y) such that T1 proves πf is functional, and

t sends predicate symbols P to a corresponding formula πP

Hanul Jeon Cornell University
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Definition (cont’d)

Let s0, · · · , sn−1, t1, · · · , tm be terms, f a function symbol,
and P a predicate symbol or =, then t sends
(P(f (s0, · · · , sn−1), t1, · · · , tm)) to

∃x0 · · · ∃xn−1∃y

[ ∧
0≤i<n

(xi = si )
t ∧ πf (x0, · · · , xn−1, y)

∧ (P(y , t1, · · · , tm))t

]

t respects logical connectives, and sends ∀xφ(x) and ∃φ(x) to
∀x(π∀(x)→ φt(x)) and ∃x(π∀(x) ∧ φt(x)) respectively.

If T0 ` φ(~x) then T1 ` φt(~x).
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Interpretation: an example

Example

T0 = The Theory of monoids : Language {e, ∗} with axioms

1 ∀x [(x ∗ e) = (e ∗ x) = x ], and
2 ∀xyz [x ∗ (y ∗ z) = (x ∗ y) ∗ z ].

T1 = PA.

Define s : T0 → T1 by

1 π∀(x) ≡ (x 6= 0)

2 πe(x) ≡ (x = S0)

3 π∗(x , y , z) ≡ (x · y = z)

π∀ states our ‘monoid’ does not have 0 as an element, and πe(x)
and π∗(x , y , z) interprets x = e and x ∗ y = z respectively.

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Interpretation: an example

Example

T0 = The Theory of monoids : Language {e, ∗} with axioms

1 ∀x [(x ∗ e) = (e ∗ x) = x ], and
2 ∀xyz [x ∗ (y ∗ z) = (x ∗ y) ∗ z ].

T1 = PA.

Define s : T0 → T1 by

1 π∀(x) ≡ (x 6= 0)

2 πe(x) ≡ (x = S0)

3 π∗(x , y , z) ≡ (x · y = z)

π∀ states our ‘monoid’ does not have 0 as an element,

and πe(x)
and π∗(x , y , z) interprets x = e and x ∗ y = z respectively.

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Interpretation: an example

Example

T0 = The Theory of monoids : Language {e, ∗} with axioms

1 ∀x [(x ∗ e) = (e ∗ x) = x ], and
2 ∀xyz [x ∗ (y ∗ z) = (x ∗ y) ∗ z ].

T1 = PA.

Define s : T0 → T1 by

1 π∀(x) ≡ (x 6= 0)

2 πe(x) ≡ (x = S0)

3 π∗(x , y , z) ≡ (x · y = z)

π∀ states our ‘monoid’ does not have 0 as an element, and πe(x)
and π∗(x , y , z) interprets x = e and x ∗ y = z respectively.

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Bi-interpretation

Convention

For s : T0 → T1 and t : T1 → T2, ts is a composition of two
interpretations, given by

φts ≡ (φs)t.

Definition

Let s : T0 → T1 and t : T1 → T0 be interpretations. Then s is an
inverse of t if T0 ` φts ↔ φ and T1 ` φst ↔ φ.

If s has an inverse, then s is a bi-interpretation.

In other words, s is an inverse of t if ts = 1T0 and st = 1T1 , where
1T : T → T is the identity interpretation

1T : φ 7→ φ.
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Interpretating Set theory into Arithmetic

First, we will interpret the membership relation ∈.

Definition (Ackermann)

Work over HA. Let a and b be natural numbers. Define a E b as
follows:

a E b ⇐⇒ ∃r < 2a∃m < b[b = (2m + 1) · 2a + r ]. (1)

Intuitively, a E b means the ath digit of the binary expansion of b is
1.
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Theorem

a : T→ HA is an interpretation, which is defined by
(x ∈ y)a ≡ (x E y) and π∀(x) ≡ (x = x).

Proof.

Extensionality: a = b if and only if a and b have the same
binary expansion.

Set Induction: Follows from the usual induction.

Pairing, Union, Binary Intersection: We can directly construct
an instance witnessing each axiom.
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Proof. (cont’d).

For example, if we define

pair(a, b) =

{
2a if a = b,

2a + 2b if a 6= b.

then c = pair(a, b) satisfies (c = {a, b})a.

V=Fin:

1 Define v(n) inductively by v(0) = 0, v(n + 1) = 2v(n) + v(n).
Then show that (a ∈ N)a if and only if a = v(n) for some n.

2 Prove that ∃n(c and v(n) have the same size)a by induction
on c .

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Proof. (cont’d).

For example, if we define

pair(a, b) =

{
2a if a = b,

2a + 2b if a 6= b.

then c = pair(a, b) satisfies (c = {a, b})a.

V=Fin:

1 Define v(n) inductively by v(0) = 0, v(n + 1) = 2v(n) + v(n).
Then show that (a ∈ N)a if and only if a = v(n) for some n.

2 Prove that ∃n(c and v(n) have the same size)a by induction
on c .

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Proof. (cont’d).

For example, if we define

pair(a, b) =

{
2a if a = b,

2a + 2b if a 6= b.

then c = pair(a, b) satisfies (c = {a, b})a.

V=Fin:

1 Define v(n) inductively by v(0) = 0, v(n + 1) = 2v(n) + v(n).
Then show that (a ∈ N)a if and only if a = v(n) for some n.

2 Prove that ∃n(c and v(n) have the same size)a by induction
on c .

Hanul Jeon Cornell University

Constructive Ackermann’s interpretation



Introduction Preliminaries Bi-interpretation Subtheories Coda

Interpretating Arithmetic into Set theory

We will take Kaye and Wong’s ordinal interpretation

Definition (Ordinal interpretation)

The interpretation o : HA→ T sends relations and fucntions to a
corresponding operations of N defined by T, and π∀(x) ≡ (x ∈ N).

Kaye and Wong use ordinals instead of N, but T proves the
class of all ordinals is N.

However, o is not a bi-interpretation.
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Salvaging the ordinal interpretation

Definition

Σ̂ : N× P(N)→ N is a function defined recursively as follows:

Σ̂(c + 1, x) =

{
Σ̂(c , x), if c + 1 /∈ x ,

Σ̂(c , x) + (c + 1), if c + 1 ∈ x ,

Take Σ(x) = Σ̂(x ,
⋃
x) and

p(x) = Σ({2p(y) | y ∈ x}).

Intuitively, Σ(x) is the sum of all elements of x , and

p(x) codes a given set to its corresponding binary expansion.
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Example

p(∅) = 0, p({∅}) = 20 = 1, and p({∅, {∅}}) = 20 + 21.

Theorem

T proves p is a bijection between V and N.

where V is the class of all sets.

Theorem

If b is defined by (φ(~x))b ≡ φo(p(~x)), then b : HA→ T.
Moreover, a and b are inverses of each other.
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Review: Σn and Πn

Definition

Let ∆0 = Σ0 = Π0 be the set of all bounded formulas. Define Σn

and Πn as follows:

1 φ is Σn if it is equivalent to ∃x1 · · · ∃xnψ for some ψ ∈ Πn−1,
and

2 φ is Πn if it is equivalent to ∀x1 · · · ∀xnψ for some ψ ∈ Σn−1.

Σn and Πn measure the complexity of a given formula based on its
quantifiers.

Proposition

1 Σn ∪ Πn ⊆ Σn+1 ∩ Πn+1 for each n.

2
⋃

n Σn =
⋃

n Πn is the set of all formulas.
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Lévy-Fleischmann hierarchy

We will define classes of formulas that are constructive analogue of
Σn and Πn classes.

Definition

Let Φ and Ψ be a set of formulas over the language of set theory
or arithmetic. Then E(Φ) is the smallest set containing Φ which is
closed under ∧, ∨, ∃ and bounded quantifications.
U(Φ,Ψ) is the smallest set containing Φ such that

1 Φ ⊆ U(Φ,Ψ),

2 U(Φ,Ψ) is closed under ∧, ∨, ∀, and bounded quantifications,
and

3 if ψ ∈ Ψ and φ ∈ U(Φ,Ψ) then ψ → φ is in U(Φ,Ψ).
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Definition

E0 = U0 is the class of all bounded formulas. Define En and Un
recursively as follows:

En+1 = E(Un), and

Un+1 = U(En, En).

Theorem

1 En and Un are monotone, i.e., En ⊆ En+1 and Un ⊆ Un+1,

2 En ⊆ Un+1 and Un ⊆ En+1,

3
⋃∞

n=0 En =
⋃∞

n=0 Un is the set of all formulas.

4 Assuming the full excluded middle, we have En = Σn and
Un = Πn.
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Subtheories IEn and SIEn

Definition

IEn is a subtheory of HA obtained by restricting Induction
scheme to En-formulas.

SIEn is a subtheory of T obtained by restricting Set Induction
scheme to En-formulas.

Observation

Almost all notions (e.g., N, a, b) that are necessary for our proof
are definable by E1-formulas.
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Defining notions over IE1 and SIE1

IE1 and SIE1 are strong enough to allow recursive definition for
E1-formulas.

For example, SIE1 can prove

Theorem (E1-primitive recursion over natural numbers)

Let A and B be E1-definable classes and F : B → A,
G : B × N× A→ A be E1-definable class functions. Then there is
a E1-definable definable class function H : B × N→ A such that

1 H(b, 0) = F (b), and

2 H(b, Sn) = G (b, n,H(b, n)).

The same holds for set recursion over SIE1 and recursion over IE1.
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Bi-interpretation between subtheories

Theorem

Let n ≥ 1. Then a : SIEn → IEn, b : IEn → SIEn and a are b are
inverses of each others.

Proof.

Since IE1 ⊆ IEn and SIE1 and SIEn, both IEn and SIEn can define
necessary notions we need for the proof. Hence we can carry on
the same proof for HA and T.
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Relation between Kaye and Wong’s result

Theorem (Kaye and Wong 2007)

IΣn: Subtheory of PA by restricting the induction scheme for
Σn-formulas.

Σn-Sep: Extensionality, Pairing, Empty Set, Union, ¬Infinity,
∆0-Collection, (Σ1 ∪ Π1)-Set Induction, Σn-Separation.

Then a : Σn-Sep→ IΣn and b : IΣn → Σn-Sep are inverses of each
other.

Theorem

IEn + Full Excluded middle = IΣn, and

SIEn + Full Excluded middle = Σn-Sep.
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IZF vs CZF

Theorem

IZFfin proves the law of excluded middle. Hence IZFfin = ZFfin.

Unlike CZFfin, IZFfin is a classical theory.

Hence IZFfin is not bi-interpretable with HA, unlike CZFfin.

A possible reason for the philosophical preference of CZF over
IZF as a constructive counterpart of ZF?
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Comparison with McCarty and Shapiro’s SST

McCarty and Shapiro also provided a set theory which is
bi-interpretable with HA.

Definition (Small Set Theory SST)

SST comprises the following axioms:

1 Extensionality,

2 Empty set,

3 y -successor of x : x ∪ {y} exists for all x and y , and

4 Induction: If φ(∅) and if

∀x , y [y /∈ x ∧ φ(x) ∧ φ(y)→ φ(x ∪ {y})],

then ∀xφ(x) holds.
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Theorem

SST proves every axiom of CZFfin.

Hence my result and that of McCarty and Shapiro is almost the
same.
Why almost? Heyting arithmetic I used and they used are different!

Remark

McCarty and Shapiro uses the following definition of HA: the
language of HA contains symbols for each primitive recursive
functions, and its definitions as axioms.
I only consider +, · and ≤ as a part of the language of HA.
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Questions
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The end

Thank you for listening to my presentation!
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