Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda

Constructive Ackermann's interpretation

Hanul Jeon

Cornell University

2022/01/14

The 2nd Korean Logic day

< 口 > < 同 >

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Table of Contents

1 Introduction

- 2 Preliminaries
- 3 Bi-interpretation

4 Subtheories

5 Coda

▲口 ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000				

Peano arithmetic PA (Peano 1889)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへ⊙

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000				

- Peano arithmetic PA (Peano 1889)
- Zermelo-Fraenkel set theory ZF (Zermelo 1908, Fraenkel and Skolem 1922)

Image: Image:

Cornell University

Hanul Jeon Constructive Ackermann's interpretation

- Peano arithmetic PA (Peano 1889)
- Zermelo-Fraenkel set theory ZF (Zermelo 1908, Fraenkel and Skolem 1922)
- Both theories provide a foundation for mathematics

Image: A mathematical states and a mathem

- Peano arithmetic PA (Peano 1889)
- Zermelo-Fraenkel set theory ZF (Zermelo 1908, Fraenkel and Skolem 1922)
- Both theories provide a foundation for mathematics, <u>but</u> PA is incapable of representing an actual infinity.

Image: A mathematical states and a mathem

Subtheories

Coda 0000000

Cornell University

Set theory and arithmetic, constructively

Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)

Image: A math a math

Hanul Jeon

Image: A math a math

Set theory and arithmetic, constructively

- Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)
- Heyting arithmetic HA (Heyting 1930)

Hanul Jeon Constructive Ackermann's interpretation

・ロト ・回ト ・ヨト

Cornell University

Set theory and arithmetic, constructively

- Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)
- Heyting arithmetic HA (Heyting 1930)
- Intuitionistic set theory IZF (Friedman 1973)

Hanul Jeon Constructive Ackermann's interpretation

Image: A math a math

Set theory and arithmetic, constructively

- Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)
- Heyting arithmetic HA (Heyting 1930)
- Intuitionistic set theory IZF (Friedman 1973)
- Constructive set theory CZF (Aczel 1978)

Image: A math a math

Set theory and arithmetic, constructively

- Constructivism (Brouwer 1907, Markov 1954, Bishop 1967)
- Heyting arithmetic HA (Heyting 1930)
- Intuitionistic set theory IZF (Friedman 1973)
- Constructive set theory CZF (Aczel 1978)
 HA + Excluded Middle = PA
 IZF + Excluded Middle = CZF + Excluded Middle = ZF

Cornell University

Hanul Jeon

Preliminaries

Bi-interpretation 000000 Subtheories

Coda 0000000

Differences between IZF and CZF

Cornell University

Hanul Jeon

Preliminaries

Bi-interpretation 000000 Subtheorie

Coda 0000000

Differences between IZF and CZF

IZF

1 Full separation

CZF

1 Bounded separation

・ロト・日本・ キョト・ キョー うえつ

Cornell University

Hanul Jeon

Subtheories

Coda 0000000

Differences between IZF and CZF

IZF

- 1 Full separation
- 2 Powerset

CZF

1 Bounded separation

Image: A mathematical states and a mathem

2 Subset collection

Hanul Jeon

Constructive Ackermann's interpretation

Cornell University

Subtheories

Coda 0000000

Differences between IZF and CZF

IZF

- 1 Full separation
- 2 Powerset
- 3 Impredicative

CZF

- Bounded separation
- 2 Subset collection
- 3 Allows type-theoretic interpretation

Image: A math a math

Hanul Jeon

Constructive Ackermann's interpretation

Cornell University

Subtheories

Coda 0000000

Cornell University

Differences between IZF and CZF

IZF

- 1 Full separation
- 2 Powerset
- 3 Impredicative
- 4 Equiconsistent with ZF

CZF

- Bounded separation
- 2 Subset collection
- Allows type-theoretic interpretation

4 Far more weaker than ZF

Subtheories

Coda 0000000

Differences between IZF and CZF

IZF

- 1 Full separation
- 2 Powerset
- 3 Impredicative
- 4 Equiconsistent with ZF

and more ...

CZF

- Bounded separation
- 2 Subset collection
- Allows type-theoretic interpretation

4 Far more weaker than ZF

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000				

Ackermann's intrepretation

Question

Is there any relationship between PA and ZF?

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Ackermann's intrepretation

Question

Is there any relationship between PA and ZF?

Theorem (Ackermann 1937)

PA can interpret ZF without Infinity.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Hanul Jeon Constructive Ackermann's interpretation

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Ackermann's intrepretation

Question

Is there any relationship between PA and ZF?

Theorem (Ackermann 1937)

PA can interpret ZF without Infinity.

Theorem (Kaye and Wong 2007)

PA is bi-interpretable with ZF^{fin}.

Here $ZF^{fin} = (ZF - Infinity) + \neg Infinity + \forall x \exists TC(x)$. (Alternatively, \in -induction instead of $\forall x \exists TC(x)$.)

イロト イロト イヨト イヨ

Cornell University

Hanul Jeon

Image: A math a math

Ackermann's intrepretation, constructively?

Question

Is there any relationship between HA and some set theory?

 Unlike classical case, we have at least two candidates: IZF^{fin} and CZF^{fin}.

< □ > < 同 > < Ξ > <</p>

Ackermann's intrepretation, constructively?

Question

Is there any relationship between HA and some set theory?

 Unlike classical case, we have at least two candidates: IZF^{fin} and CZF^{fin}.

Theorem (McCarty and Shapiro, J.)

HA is bi-interpretable with CZF^{fin}.

Cornell University

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
•00000000000			

Heyting arithmetic

Definition (Heyting arithmetic)

$$\mathsf{Language} = \{\mathsf{0}, \mathsf{S}, <, +, \cdot\}$$

Axioms:

- 1 S is injective,
- 2 Every natural number is 0 or a successor,
- **3** Defining formulas for +, \cdot , <, and
- 4 The Induction scheme: if $\phi(0)$ and $\phi(n) \rightarrow \phi(Sn)$ for all n, then $\forall n\phi(n)$

・ロト ・回ト ・ヨト・

Cornell University

Preliminaries	Bi-interpretation	Subtheories	Coda
00000000000			

Theorem (Recursion theorem)

Let $f(\cdot)$ and $g(\cdot, \cdot)$ be definable functions. Then we can also define h satisfying the following conditions:

1
$$h(0, y) = f(y)$$
, and

2
$$h(Sx, y) = g(h(x, y), y).$$

メロト メロト メヨト メヨ

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
00000000000			

Theorem (Recursion theorem)

Let $f(\cdot)$ and $g(\cdot, \cdot)$ be definable functions. Then we can also define *h* satisfying the following conditions:

- 1 h(0, y) = f(y), and
- 2 h(Sx, y) = g(h(x, y), y).

Theorem

t

Hanul Jeon

If $\phi(x)$ is a <u>bounded formula</u>, i.e., every quantifier of $\phi(x)$ is of the form

•
$$(\forall x < a) \equiv (\forall x : x < a \rightarrow \cdots), \text{ or}$$

• $(\exists x < a) \equiv (\exists x : x < a \land \cdots),$
hen $\phi(x) \lor \neg \phi(x).$

Cornell University

< □ > < 同 > < Ξ > <</p>

Introduction 00000	Preliminaries 00●000000000	Bi-interpretation 000000	Subtheories 0000000	Coda 0000000

Axioms of ZF

Definition

1 Extensionality:
$$a = b \iff \forall x (x \in a \leftrightarrow x \in b)$$
,

イロト イヨト イヨト イヨト

æ

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00●000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00●000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,

・ロ・・雪・・雪・・雪・・

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,

Cornell University

メロト メロト メヨト メヨ

Constructive Ackermann's interpretation

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function,

メロト メロト メヨト メヨ

Cornell University

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function,

イロト イロト イヨト イヨ

Cornell University

6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists,

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function,

< □ > < 同 > < Ξ > <</p>

Cornell University

- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists,
- **7** Regularity: every set has a \in -minimal element,

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Replacement: $\{F(x) \mid x \in a\}$ exists if F is a class function,

< □ > < 同 > < Ξ > <</p>

Cornell University

- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists,
- 7 Regularity: every set has a ∈-minimal element,
- 8 Infinity: \mathbb{N} exists.

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- 4 Separation: $\{x \in a \mid \phi(x)\}$ exists,
- **5** Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is *b* such that $\forall x \in a \exists y \in b \phi(x, y)$
- 6 Power set: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$ exists,
- **7** Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: ℕ exists.

Image: A math a math

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000	000000	0000000	0000000

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- **4** Bounded Separation: $\{x \in a \mid \phi(x)\}$ exists if ϕ is bounded,
- **5** Strong Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is *b* such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$,

イロト イヨト イヨト

Cornell University

- **6** Subset Collection: There is a full subset of mv(a, b),
- **7** Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 Infinity: \mathbb{N} exists.

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000		0000000	0000000

Axioms of CZF^{fin}

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- **4** Bounded Separation: $\{x \in a \mid \phi(x)\}$ exists if ϕ is bounded,
- **5** Strong Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is *b* such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$,
- **6** Subset Collection: There is a full subset of mv(a, b),
- **7** Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 V=Fin: every set is finite

Image: A math a math

Hanul Jeon
Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda 0000000

Simplified axioms of CZF^{fin}

Definition

- **1** Extensionality: $a = b \iff \forall x (x \in a \leftrightarrow x \in b)$,
- **2** Pairing: $\{a, b\}$ exists,
- **3** Union: $\bigcup a$ exists,
- **4** Binary intersection: $a \cap b$ exists,
- **5** Strong Collection: if $\forall x \in a \exists y \phi(x, y)$, then there is *b* such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$,
- 6 Subset Collection: There is a full subset of mv(a, b),
- **7** Set Induction: $\forall a[[\forall x \in a\phi(x)] \rightarrow \phi(a)] \rightarrow \forall a\phi(a)$
- 8 V=Fin: every set is finite

<<p>< □ ト < 同 ト < 三 ト</p>

Hanul Jeon

Subtheories

Image: A math a math

Coda 0000000

Cornell University

Consequences of simplified CZF $^{\text{fin}},\,\mathbb{T}$

Definition

Let $\mathbb T$ be a theory comprises Extensionality, Pairing, Union, Binary intersection, Set Induction and V=Fin.

Hanul Jeon

Subtheories

< □ > < 同 > < Ξ > <</p>

Coda 0000000

Consequences of simplified CZF^fin, $\mathbb T$

Definition

Let $\mathbb T$ be a theory comprises Extensionality, Pairing, Union, Binary intersection, Set Induction and V=Fin.

Then \mathbb{T} proves the following theorems:

Theorem (Primitive recursion over natural numbers)

Let A and B be classes and $F : B \to A$, $G : B \times \mathbb{N} \times A \to A$ be class functions. Then there is a definable class function $H : B \times \mathbb{N} \to A$ such that

1
$$H(b,0) = F(b)$$
, and

2
$$H(b, Sn) = G(b, n, H(b, n)).$$

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	0000000000000	000000	0000000	0000000

Let $G: V^{n+2} \rightarrow V$ be an (n+2)-ary class function. Then there is a (n+1)-ary class function F such that

$$F(\vec{x}, y) = G(\vec{x}, y, \langle F(\vec{x}, z) \mid z \in y \rangle).$$

Cornell University

イロト イヨト イヨト イヨト

Hanul Jeon Constructive Ackermann's interpretation

Preliminaries	Bi-interpretation	Subtheories	Coda
000000000000			

Let $G: V^{n+2} \to V$ be an (n+2)-ary class function. Then there is a (n+1)-ary class function F such that

$$F(\vec{x}, y) = G(\vec{x}, y, \langle F(\vec{x}, z) \mid z \in y \rangle).$$

Theorem (Bounded Excluded middle)

Let $\phi(x)$ be a <u>bounded formula</u>, i.e., every quantifier is of the form $\forall x \in y$ or $\exists x \in y$, we have $\phi(x) \lor \neg \phi(x)$.

イロト イポト イヨト イヨト

Cornell University

Preliminaries	Bi-interpretation	Subtheories	Coda
000000000000			

Let $G: V^{n+2} \rightarrow V$ be an (n+2)-ary class function. Then there is a (n+1)-ary class function F such that

$$F(\vec{x}, y) = G(\vec{x}, y, \langle F(\vec{x}, z) \mid z \in y \rangle).$$

Theorem (Bounded Excluded middle)

Let $\phi(x)$ be a <u>bounded formula</u>¹, i.e., every quantifier is of the form $\forall x \in y$ or $\exists x \in y$, we have $\phi(x) \lor \neg \phi(x)$.

イロト イポト イヨト イヨト

Cornell University

¹also called Δ_0 -formula

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
000000000000			

Let $G: V^{n+2} \to V$ be an (n+2)-ary class function. Then there is a (n+1)-ary class function F such that

$$F(\vec{x}, y) = G(\vec{x}, y, \langle F(\vec{x}, z) \mid z \in y \rangle).$$

Theorem (Bounded Excluded middle)

Let $\phi(x)$ be a <u>bounded formula</u>¹, i.e., every quantifier is of the form $\forall x \in y$ or $\exists x \in y$, we have $\phi(x) \lor \neg \phi(x)$.

Theorem

 $\mathbb T$ proves Strong Collection, Subset Collection and Powerset. Moreover, $\mathsf{CZF}^{\mathsf{fin}}$ and $\mathbb T$ prove the same sentences.

Cornell University

¹also called Δ_0 -formula

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	0000000000000	000000	0000000	0000000

Interpretation

There are various possible formulations of interpretations. However, we will only consider the following form of interpretations:

Definition

Let T_i (i = 0, 1) be theories over languages \mathcal{L}_i . Then the map $\mathfrak{t} : \varphi \mapsto \varphi^{\mathfrak{t}}$, which sends \mathcal{L}_0 -formulas to \mathcal{L}_1 -formulas, is an interpretation from T_0 to T_1 (notation: $\mathfrak{t} : T_0 \to T_1$) if the following holds:

- There is a \mathcal{L}_1 -formula $\pi_{\forall}(x)$ (domain of T_0) such that $T_1 \vdash \exists x \pi_{\forall}(x)$,
- For each *n*-ary function symbol f of \mathcal{L}_0 , there is a (n + 1)-ary formula $\pi_f(\vec{x}, y)$ such that T_1 proves π_f is functional, and
- t sends predicate symbols P to a corresponding formula π_P

ntroduct	n Preliminaries ooooooooooooooooooooo	Bi-interpretation 000000	Subtheories 0000000	Coda 0000000
C	efinition (cont'd)			
	Let s ₀ ,, s _{n-1} , t ₁ , and P a predicate syn (P(f(s ₀ ,, s _{n-1}), t ₁)	\cdots , t_m be terms, f nbol or =, then t s $, \cdots, t_m$)) to	a function syml ends	bol,
	$\exists x_0 \cdots \exists x_{n-1} \exists y \left[\bigwedge_{0 \leq x_{n-1}} dx_{n-1} dx_{n$	$\bigvee_{i < n} (x_i = s_i)^{\mathfrak{t}} \wedge \pi_f(x_i)$	x_0,\cdots,x_{n-1},y	
		Λ	$(P(y, t_1, \cdots, t_m))$)) ^t]

t respects logical connectives, and sends ∀xφ(x) and ∃φ(x) to ∀x(π∀(x) → φ^t(x)) and ∃x(π∀(x) ∧ φ^t(x)) respectively.
If T₀ ⊢ φ(x) then T₁ ⊢ φ^t(x).

A D > A D > A D
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Interpretation: an example

Example

*T*₀ = The Theory of monoids : Language {*e*, *} with axioms
 ∀*x*[(*x* * *e*) = (*e* * *x*) = *x*], and
 ∀*xyz*[*x* * (*y* * *z*) = (*x* * *y*) * *z*].
 *T*₁ = PA.

<ロト < 回 ト < 画 ト < 重 ト < 重 ト 重 の Q () Cornell University

Hanul Jeon

	Preliminaries		Subtheories	Coda
00000	0000000000000	000000	0000000	0000000

Interpretation: an example

Example

• T_0 = The Theory of monoids : Language $\{e, *\}$ with axioms • $\forall x[(x * e) = (e * x) = x]$, and • $\forall xyz[x * (y * z) = (x * y) * z]$. • $T_1 = PA$. Define $\mathfrak{s} : T_0 \to T_1$ by • $\pi_{\forall}(x) \equiv (x \neq 0)$ • $\pi_e(x) \equiv (x \neq 0)$ • $\pi_e(x) \equiv (x = S0)$ • $\pi_*(x, y, z) \equiv (x \cdot y = z)$ π_{\forall} states our 'monoid' does not have 0 as an element,

イロト イヨト イヨト

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	0000000000●0	000000	0000000	0000000

Interpretation: an example

Example

• T_0 = The Theory of monoids : Language $\{e, *\}$ with axioms 1 $\forall x [(x * e) = (e * x) = x]$, and 2 $\forall xyz[x * (y * z) = (x * y) * z].$ $T_1 = PA.$ Define $\mathfrak{s}: T_0 \to T_1$ by 1 $\pi_{\forall}(x) \equiv (x \neq 0)$ **2** $\pi_e(x) \equiv (x = S0)$ 3 $\pi_*(x, y, z) \equiv (x \cdot y = z)$ π_{\forall} states our 'monoid' does not have 0 as an element, and $\pi_e(x)$ and $\pi_*(x, y, z)$ interprets x = e and x * y = z respectively.

イロト イロト イヨト イヨ

Cornell University

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Convention

For $\mathfrak{s}: T_0 \to T_1$ and $\mathfrak{t}: T_1 \to T_2$, \mathfrak{ts} is a composition of two interpretations, given by

$$\phi^{\mathfrak{ts}} \equiv (\phi^{\mathfrak{s}})^{\mathfrak{t}}.$$

Definition

Let $\mathfrak{s} : T_0 \to T_1$ and $\mathfrak{t} : T_1 \to T_0$ be interpretations. Then \mathfrak{s} is an inverse of \mathfrak{t} if $T_0 \vdash \phi^{\mathfrak{ts}} \leftrightarrow \phi$ and $T_1 \vdash \phi^{\mathfrak{st}} \leftrightarrow \phi$.

イロト イヨト イヨト イヨト

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Convention

For $\mathfrak{s}: T_0 \to T_1$ and $\mathfrak{t}: T_1 \to T_2$, \mathfrak{ts} is a composition of two interpretations, given by

$$\phi^{\mathfrak{ts}} \equiv (\phi^{\mathfrak{s}})^{\mathfrak{t}}.$$

Definition

Let $\mathfrak{s}: T_0 \to T_1$ and $\mathfrak{t}: T_1 \to T_0$ be interpretations. Then \mathfrak{s} is an inverse of \mathfrak{t} if $T_0 \vdash \phi^{\mathfrak{ts}} \leftrightarrow \phi$ and $T_1 \vdash \phi^{\mathfrak{st}} \leftrightarrow \phi$. If \mathfrak{s} has an inverse, then \mathfrak{s} is a bi-interpretation.

イロト イヨト イヨト イヨト

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	00000000000●	000000	0000000	0000000

Convention

For $\mathfrak{s}: T_0 \to T_1$ and $\mathfrak{t}: T_1 \to T_2$, \mathfrak{ts} is a composition of two interpretations, given by

$$\phi^{\mathfrak{ts}} \equiv (\phi^{\mathfrak{s}})^{\mathfrak{t}}.$$

Definition

Let $\mathfrak{s}: T_0 \to T_1$ and $\mathfrak{t}: T_1 \to T_0$ be interpretations. Then \mathfrak{s} is an inverse of \mathfrak{t} if $T_0 \vdash \phi^{\mathfrak{ts}} \leftrightarrow \phi$ and $T_1 \vdash \phi^{\mathfrak{st}} \leftrightarrow \phi$. If \mathfrak{s} has an inverse, then \mathfrak{s} is a bi-interpretation.

In other words, \mathfrak{s} is an inverse of t if $\mathfrak{ts} = 1_{\mathcal{T}_0}$ and $\mathfrak{st} = 1_{\mathcal{T}_1}$, where $1_{\mathcal{T}} : \mathcal{T} \to \mathcal{T}$ is the identity interpretation

Cornell University

Hanul Jeon

Subtheories

Coda 0000000

Interpretating Set theory into Arithmetic

First, we will interpret the membership relation \in .

Cornell University

Hanul Jeon

Subtheories

イロト イヨト イヨト イ

Coda 0000000

Cornell University

Interpretating Set theory into Arithmetic

First, we will interpret the membership relation \in .

Definition (Ackermann)

Work over HA. Let a and b be natural numbers. Define $a \in b$ as follows:

$$a \to b \iff \exists r < 2^a \exists m < b[b = (2m+1) \cdot 2^a + r].$$
(1)

Intuitively, $a \to b$ means the *a*th digit of the binary expansion of *b* is 1.

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	0●0000	0000000	0000000

Theorem

 $\mathfrak{a}: \mathbb{T} \to \mathsf{HA}$ is an interpretation, which is defined by $(x \in y)^{\mathfrak{a}} \equiv (x \to y)$ and $\pi_{\forall}(x) \equiv (x = x)$.

イロト イヨト イヨト イヨ

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	0●0000	0000000	0000000

Theorem

 $\mathfrak{a}: \mathbb{T} \to \mathsf{HA}$ is an interpretation, which is defined by $(x \in y)^{\mathfrak{a}} \equiv (x \to y)$ and $\pi_{\forall}(x) \equiv (x = x)$.

Proof.

- Extensionality: a = b if and only if a and b have the same binary expansion.
- Set Induction: Follows from the usual induction.
- Pairing, Union, Binary Intersection: We can directly construct an instance witnessing each axiom.

メロト メロト メヨト メヨ

Cornell University

Preliminaries	Bi-interpretation	Subtheories	Coda
	00000		

Proof. (cont'd).

For example, if we define

$$\mathsf{pair}(a,b) = \begin{cases} 2^a & \text{if } a = b, \\ 2^a + 2^b & \text{if } a \neq b. \end{cases}$$

then c = pair(a, b) satisfies $(c = \{a, b\})^{a}$.

Cornell University

メロト メロト メヨト メヨ

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
			0000000	0000000

Proof. (cont'd).

For example, if we define

$$\mathsf{pair}(a,b) = egin{cases} 2^a & ext{if } a = b, \ 2^a + 2^b & ext{if } a
eq b. \end{cases}$$

then c = pair(a, b) satisfies $(c = \{a, b\})^{\mathfrak{a}}$.

■ V=Fin:

1 Define v(n) inductively by v(0) = 0, $v(n + 1) = 2^{v(n)} + v(n)$. Then show that $(a \in \mathbb{N})^a$ if and only if a = v(n) for some n.

イロト イヨト イヨト イヨ

Cornell University

Preliminaries	Bi-interpretation	Subtheories	Coda
	00000		

Proof. (cont'd).

For example, if we define

$$\operatorname{pair}(a,b) = egin{cases} 2^a & ext{if } a = b, \ 2^a + 2^b & ext{if } a
eq b. \end{cases}$$

then c = pair(a, b) satisfies $(c = \{a, b\})^{\mathfrak{a}}$.

■ V=Fin:

 Define v(n) inductively by v(0) = 0, v(n + 1) = 2^{v(n)} + v(n). Then show that (a ∈ N)^a if and only if a = v(n) for some n.
 Prove that ∃n(c and v(n) have the same size)^a by induction on c.

イロト イボト イヨト イヨ

Cornell University

Hanul Jeon

Cornell University

Interpretating Arithmetic into Set theory

We will take Kaye and Wong's ordinal interpretation

Definition (Ordinal interpretation)

The interpretation $\mathfrak{o} : HA \to \mathbb{T}$ sends relations and fucntions to a corresponding operations of \mathbb{N} defined by \mathbb{T} , and $\pi_{\forall}(x) \equiv (x \in \mathbb{N})$.

Constructive Ackermann's interpretation

Hanul Jeon

Image: A math a math

Interpretating Arithmetic into Set theory

We will take Kaye and Wong's ordinal interpretation

Definition (Ordinal interpretation)

The interpretation $\mathfrak{o} : HA \to \mathbb{T}$ sends relations and functions to a corresponding operations of \mathbb{N} defined by \mathbb{T} , and $\pi_{\forall}(x) \equiv (x \in \mathbb{N})$.

■ Kaye and Wong use ordinals instead of N, but T proves the class of all ordinals is N.

Cornell University

Interpretating Arithmetic into Set theory

We will take Kaye and Wong's ordinal interpretation

Definition (Ordinal interpretation)

The interpretation $\mathfrak{o} : HA \to \mathbb{T}$ sends relations and functions to a corresponding operations of \mathbb{N} defined by \mathbb{T} , and $\pi_{\forall}(x) \equiv (x \in \mathbb{N})$.

- Kaye and Wong use ordinals instead of N, but T proves the class of all ordinals is N.
- However, *o* is not a bi-interpretation.

Preliminaries	Bi-interpretation	Subtheories	Coda
	000000		

Salvaging the ordinal interpretation

Definition

 $\hat{\Sigma}:\mathbb{N}\times\mathcal{P}(\mathbb{N})\to\mathbb{N}$ is a function defined recursively as follows:

$$\hat{\Sigma}(c+1,x) = egin{cases} \hat{\Sigma}(c,x), & ext{if } c+1 \notin x, \ \hat{\Sigma}(c,x)+(c+1), & ext{if } c+1 \in x, \end{cases}$$

Take $\Sigma(x) = \hat{\Sigma}(x, \bigcup x)$ and

$$\mathfrak{p}(x) = \Sigma(\{2^{\mathfrak{p}(y)} \mid y \in x\}).$$

(a)

Cornell University

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
	000000		

Salvaging the ordinal interpretation

Definition

 $\hat{\Sigma}:\mathbb{N}\times\mathcal{P}(\mathbb{N})\to\mathbb{N}$ is a function defined recursively as follows:

$$\hat{\Sigma}(c+1,x) = egin{cases} \hat{\Sigma}(c,x), & ext{if } c+1 \notin x, \ \hat{\Sigma}(c,x)+(c+1), & ext{if } c+1 \in x, \end{cases}$$

Take $\Sigma(x) = \hat{\Sigma}(x, \bigcup x)$ and

$$\mathfrak{p}(x) = \Sigma(\{2^{\mathfrak{p}(y)} \mid y \in x\}).$$

Intuitively, $\Sigma(x)$ is the sum of all elements of x, and

• $\mathfrak{p}(x)$ codes a given set to its corresponding binary expansion.

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	00000●	0000000	0000000

Example

$$\mathfrak{p}(\varnothing) = 0$$
, $\mathfrak{p}(\{\varnothing\}) = 2^0 = 1$, and $\mathfrak{p}(\{\varnothing,\{\varnothing\}\}) = 2^0 + 2^1$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000		0000000	0000000

Example

$$\mathfrak{p}(\varnothing) = 0$$
, $\mathfrak{p}(\{\varnothing\}) = 2^0 = 1$, and $\mathfrak{p}(\{\varnothing, \{\varnothing\}\}) = 2^0 + 2^1$.

Theorem

Hanul Jeon

 \mathbb{T} proves \mathfrak{p} is a bijection between V and \mathbb{N} .

where V is the class of all sets.

Constructive Ackermann's interpretation

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	00000●	0000000	0000000

Example

$$\mathfrak{p}(\varnothing) = 0$$
, $\mathfrak{p}(\{\varnothing\}) = 2^0 = 1$, and $\mathfrak{p}(\{\varnothing,\{\varnothing\}\}) = 2^0 + 2^1$.

Theorem

 \mathbb{T} proves \mathfrak{p} is a bijection between V and \mathbb{N} .

where V is the class of all sets.

Theorem

If \mathfrak{b} is defined by $(\phi(\vec{x}))^{\mathfrak{b}} \equiv \phi^{\mathfrak{o}}(\mathfrak{p}(\vec{x}))$, then $\mathfrak{b} : \mathsf{HA} \to \mathbb{T}$. Moreover, \mathfrak{a} and \mathfrak{b} are inverses of each other.

イロト イロト イヨト イヨ

Cornell University

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Review: Σ_n and Π_n

Definition

Let $\Delta_0 = \Sigma_0 = \Pi_0$ be the set of all bounded formulas. Define Σ_n and Π_n as follows:

1 ϕ is Σ_n if it is equivalent to $\exists x_1 \cdots \exists x_n \psi$ for some $\psi \in \Pi_{n-1}$, and

2 ϕ is Π_n if it is equivalent to $\forall x_1 \cdots \forall x_n \psi$ for some $\psi \in \Sigma_{n-1}$.

Cornell University

< ロ > < 回 > < 回 > < 回 > <</p>

Constructive Ackermann's interpretation

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Review: Σ_n and Π_n

Definition

Let $\Delta_0 = \Sigma_0 = \Pi_0$ be the set of all bounded formulas. Define Σ_n and Π_n as follows:

1 ϕ is Σ_n if it is equivalent to $\exists x_1 \cdots \exists x_n \psi$ for some $\psi \in \Pi_{n-1}$, and

2 ϕ is Π_n if it is equivalent to $\forall x_1 \cdots \forall x_n \psi$ for some $\psi \in \Sigma_{n-1}$.

 Σ_n and Π_n measure the complexity of a given formula based on its quantifiers.

< □ > < 同 > < Ξ > <</p>

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Review: Σ_n and Π_n

Definition

Let $\Delta_0 = \Sigma_0 = \Pi_0$ be the set of all bounded formulas. Define Σ_n and Π_n as follows:

- 1 ϕ is Σ_n if it is equivalent to $\exists x_1 \cdots \exists x_n \psi$ for some $\psi \in \Pi_{n-1}$, and
- **2** ϕ is Π_n if it is equivalent to $\forall x_1 \cdots \forall x_n \psi$ for some $\psi \in \Sigma_{n-1}$.

 Σ_n and Π_n measure the complexity of a given formula based on its quantifiers.

Proposition

1
$$\Sigma_n \cup \prod_n \subseteq \Sigma_{n+1} \cap \prod_{n+1}$$
 for each *n*.

2 $\bigcup_n \Sigma_n = \bigcup_n \Pi_n$ is the set of all formulas.

Hanul Jeon

Cornell University

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0●00000	0000000

Lévy-Fleischmann hierarchy

We will define classes of formulas that are constructive analogue of Σ_n and Π_n classes.

Cornell University

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Lévy-Fleischmann hierarchy

We will define classes of formulas that are constructive analogue of Σ_n and Π_n classes.

Definition

Let Φ and Ψ be a set of formulas over the language of set theory or arithmetic. Then $\mathcal{E}(\Phi)$ is the smallest set containing Φ which is closed under \wedge , \vee , \exists and bounded quantifications.

Cornell University

Hanul Jeon Constructive Ackermann's interpretation

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Lévy-Fleischmann hierarchy

We will define classes of formulas that are constructive analogue of Σ_n and Π_n classes.

Definition

Let Φ and Ψ be a set of formulas over the language of set theory or arithmetic. Then $\mathcal{E}(\Phi)$ is the smallest set containing Φ which is closed under \wedge , \vee , \exists and bounded quantifications. $\mathcal{U}(\Phi, \Psi)$ is the smallest set containing Φ such that

- 1 $\Phi \subseteq \mathcal{U}(\Phi, \Psi)$,
- 2 $\mathcal{U}(\Phi,\Psi)$ is closed under $\wedge,\,\vee,\,\forall,$ and bounded quantifications, and

Image: A math a math

Cornell University

3 if $\psi \in \Psi$ and $\phi \in \mathcal{U}(\Phi, \Psi)$ then $\psi \to \phi$ is in $\mathcal{U}(\Phi, \Psi)$.
Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000		0000000

Definition

 $\mathcal{E}_0=\mathcal{U}_0$ is the class of all bounded formulas. Define \mathcal{E}_n and \mathcal{U}_n recursively as follows:

- $\mathcal{E}_{n+1} = \mathcal{E}(\mathcal{U}_n)$, and
- $\bullet \mathcal{U}_{n+1} = \mathcal{U}(\mathcal{E}_n, \mathcal{E}_n).$

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
		000000	

Definition

 $\mathcal{E}_0 = \mathcal{U}_0$ is the class of all bounded formulas. Define \mathcal{E}_n and \mathcal{U}_n recursively as follows:

- $\mathcal{E}_{n+1} = \mathcal{E}(\mathcal{U}_n)$, and

Theorem

1 \mathcal{E}_n and \mathcal{U}_n are monotone, i.e., $\mathcal{E}_n \subseteq \mathcal{E}_{n+1}$ and $\mathcal{U}_n \subseteq \mathcal{U}_{n+1}$,

- **2** $\mathcal{E}_n \subseteq \mathcal{U}_{n+1}$ and $\mathcal{U}_n \subseteq \mathcal{E}_{n+1}$,
- 4 Assuming the full excluded middle, we have $\mathcal{E}_n = \Sigma_n$ and $\mathcal{U}_n = \prod_n$.

イロト イロト イヨト イヨ

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Subtheories $I\mathcal{E}_n$ and $SI\mathcal{E}_n$

Definition

• $I\mathcal{E}_n$ is a subtheory of HA obtained by restricting Induction scheme to \mathcal{E}_n -formulas.

Cornell University

Hanul Jeon

Preliminaries	Subtheories	Coda
	000000	

Subtheories $I\mathcal{E}_n$ and $SI\mathcal{E}_n$

Definition

- $I\mathcal{E}_n$ is a subtheory of HA obtained by restricting Induction scheme to \mathcal{E}_n -formulas.
- SI \mathcal{E}_n is a subtheory of \mathbb{T} obtained by restricting Set Induction scheme to \mathcal{E}_n -formulas.

Image: A mathematical states and a mathem

3 1 4

Cornell University

Hanul Jeon Constructive Ackermann's interpretation

	Di-Interpretation	Jubrieories	Coua
000000 00000000		0000000	

Subtheories $I\mathcal{E}_n$ and $SI\mathcal{E}_n$

Definition

- $I\mathcal{E}_n$ is a subtheory of HA obtained by restricting Induction scheme to \mathcal{E}_n -formulas.
- SI \mathcal{E}_n is a subtheory of \mathbb{T} obtained by restricting Set Induction scheme to \mathcal{E}_n -formulas.

Observation

Almost all notions (e.g., \mathbb{N} , \mathfrak{a} , \mathfrak{b}) that are necessary for our proof are definable by \mathcal{E}_1 -formulas.

イロト イロト イヨト イヨ

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	0000000

Defining notions over $I\mathcal{E}_1$ and $SI\mathcal{E}_1$

 $\mathsf{I}\mathcal{E}_1$ and $\mathsf{S}\mathsf{I}\mathcal{E}_1$ are strong enough to allow recursive definition for $\mathcal{E}_1\text{-}\mathsf{formulas}.$

Cornell University

Hanul Jeon

Defining notions over $I\mathcal{E}_1$ and $SI\mathcal{E}_1$

 $\mathsf{I}\mathcal{E}_1$ and $\mathsf{S}\mathsf{I}\mathcal{E}_1$ are strong enough to allow recursive definition for $\mathcal{E}_1\text{-}\mathsf{formulas}.$ For example, $\mathsf{S}\mathsf{I}\mathcal{E}_1$ can prove

Theorem (\mathcal{E}_1 -primitive recursion over natural numbers)

Let A and B be \mathcal{E}_1 -definable classes and $F: B \to A$,

 $G: B \times \mathbb{N} \times A \to A$ be $\underline{\mathcal{E}_1}$ -definable class functions. Then there is a \mathcal{E}_1 -definable definable class function $H: B \times \mathbb{N} \to A$ such that

1
$$H(b,0) = F(b)$$
, and

2
$$H(b, Sn) = G(b, n, H(b, n)).$$

The same holds for set recursion over $SI\mathcal{E}_1$ and recursion over $I\mathcal{E}_1$.

Image: A math a math

Bi-interpretation between subtheories

Theorem

Let $n \ge 1$. Then $\mathfrak{a} : Sl\mathcal{E}_n \to l\mathcal{E}_n$, $\mathfrak{b} : l\mathcal{E}_n \to Sl\mathcal{E}_n$ and \mathfrak{a} are \mathfrak{b} are inverses of each others.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 20ペ

Cornell University

Hanul Jeon

Bi-interpretation between subtheories

Theorem

Let $n \ge 1$. Then $\mathfrak{a} : Sl\mathcal{E}_n \to l\mathcal{E}_n$, $\mathfrak{b} : l\mathcal{E}_n \to Sl\mathcal{E}_n$ and \mathfrak{a} are \mathfrak{b} are inverses of each others.

Proof.

Since $I\mathcal{E}_1 \subseteq I\mathcal{E}_n$ and $SI\mathcal{E}_1$ and $SI\mathcal{E}_n$, both $I\mathcal{E}_n$ and $SI\mathcal{E}_n$ can define necessary notions we need for the proof. Hence we can carry on the same proof for HA and \mathbb{T} .

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Relation between Kaye and Wong's result

Theorem (Kaye and Wong 2007)

- $I\Sigma_n$: Subtheory of PA by restricting the induction scheme for Σ_n -formulas.
- Σ_n -Sep: Extensionality, Pairing, Empty Set, Union, \neg Infinity, Δ_0 -Collection, ($\Sigma_1 \cup \Pi_1$)-Set Induction, Σ_n -Separation.

Then $\mathfrak{a}: \Sigma_n$ -Sep $\to I\Sigma_n$ and $\mathfrak{b}: I\Sigma_n \to \Sigma_n$ -Sep are inverses of each other.

Hanul Jeon

< D > < A > < B > <</p>

Cornell University

Relation between Kaye and Wong's result

Theorem (Kaye and Wong 2007)

- $I\Sigma_n$: Subtheory of PA by restricting the induction scheme for Σ_n -formulas.
- Σ_n -Sep: Extensionality, Pairing, Empty Set, Union, \neg Infinity, Δ_0 -Collection, ($\Sigma_1 \cup \Pi_1$)-Set Induction, Σ_n -Separation.

Then $\mathfrak{a}: \Sigma_n$ -Sep $\to I\Sigma_n$ and $\mathfrak{b}: I\Sigma_n \to \Sigma_n$ -Sep are inverses of each other.

Theorem

- $|\mathcal{E}_n + Full \text{ Excluded middle} = |\Sigma_n, \text{ and}$
- $SI\mathcal{E}_n + Full Excluded middle = \Sigma_n$ -Sep.

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	●000000

Theorem

 $\mathsf{IZF}^{\mathsf{fin}}$ proves the law of excluded middle. Hence $\mathsf{IZF}^{\mathsf{fin}} = \mathsf{ZF}^{\mathsf{fin}}.$

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	●000000

Theorem

 $\mathsf{IZF}^\mathsf{fin}$ proves the law of excluded middle. Hence $\mathsf{IZF}^\mathsf{fin} = \mathsf{ZF}^\mathsf{fin}$.

■ Unlike CZF^{fin}, IZF^{fin} is a classical theory.

Cornell University

イロト イヨト イヨト イヨト

Constructive Ackermann's interpretation

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	●000000

Theorem

 $\mathsf{IZF}^{\mathsf{fin}}$ proves the law of excluded middle. Hence $\mathsf{IZF}^{\mathsf{fin}} = \mathsf{ZF}^{\mathsf{fin}}$.

- Unlike CZF^{fin}, IZF^{fin} is a classical theory.
- Hence IZF^{fin} is not bi-interpretable with HA, unlike CZF^{fin}.

イロト イヨト イヨト イヨ

Preliminaries	Bi-interpretation	Subtheories	Coda
			0000000

Theorem

 $\mathsf{IZF}^{\mathsf{fin}}$ proves the law of excluded middle. Hence $\mathsf{IZF}^{\mathsf{fin}} = \mathsf{ZF}^{\mathsf{fin}}$.

- Unlike CZF^{fin}, IZF^{fin} is a classical theory.
- Hence IZF^{fin} is not bi-interpretable with HA, unlike CZF^{fin}.
- A possible reason for the philosophical preference of CZF over IZF as a constructive counterpart of ZF?

Introduction 00000

Preliminaries 0000000000000 Bi-interpretatio

Subtheories

Coda ○●○○○○<u>○</u>○

Comparison with McCarty and Shapiro's SST

 $\mathsf{McCarty}$ and Shapiro also provided a set theory which is bi-interpretable with HA.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … 釣ぬ()

Cornell University

Hanul Jeon

Comparison with McCarty and Shapiro's SST

McCarty and Shapiro also provided a set theory which is bi-interpretable with HA.

Definition (Small Set Theory SST)

SST comprises the following axioms:

- 1 Extensionality,
- 2 Empty set,
- **3** *y*-successor of $x: x \cup \{y\}$ exists for all x and y, and
- 4 Induction: If $\phi(\emptyset)$ and if

$$\forall x, y[y \notin x \land \phi(x) \land \phi(y) \rightarrow \phi(x \cup \{y\})],$$

then $\forall x \phi(x)$ holds.

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	oo●oooo

Theorem

SST proves every axiom of CZF^{fin}.

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	oo●oooo

Theorem

SST proves every axiom of CZF^{fin}.

Hence my result and that of McCarty and Shapiro is almost the same.

イロト イヨト イヨト イ

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	oo●oooo

Theorem

SST proves every axiom of CZF^{fin}.

Hence my result and that of McCarty and Shapiro is almost the same.

Why almost? Heyting arithmetic I used and they used are different!

< D > < A > < B > <</p>

Cornell University

Remark

McCarty and Shapiro uses the following definition of HA: the language of HA contains symbols for each primitive recursive functions, and its definitions as axioms. I only consider $+, \cdot$ and \leq as a part of the language of HA.

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	000●000

Acknowledgements

- I would like to thank my advisor, Otto van Koert for ceaseless support and care on my thesis and graduation,
- Andrés E. Caicedo for helpful comments on preparing my paper,
- Charles McCarty and David Shapiro for their attention to my work.
- Lastly, I am so glad for my thesis committees to make their time.

Cornell University

Hanul Jeon

Preliminaries	Bi-interpretation	Subtheories	Coda
			0000000

David C. McCarty (1953 - 2020)

Cornell University

(日)、<四)、<三</p>

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000000000000000000000000000000	000000	000000	0000000

Questions

Cornell University

Hanul Jeon

Introduction	Preliminaries	Bi-interpretation	Subtheories	Coda
00000	000000000000	000000	0000000	000000●

The end

Thank you for listening to my presentation!

Hanul Jeon Constructive Ackermann's interpretation

