On a cofinal Reinhardt embedding without powerset

Hanul Jeon

Cornell University

2024-10-18

CUNY Set theory seminar

Hanul Jeon

Cornell University

Image: A math a math

Introduction 000000000 Matthews' proof

How to modify the previous proof

Q&A 000

Table of Contents

- 1 Introduction
- 2 Matthews' proof
- 3 How to modify the previous proof

- ▲日 > ▲園 > ▲ 画 > ▲ 画 > のので

Cornell University

Hanul Jeon

< D > < A > < B > <</p>

Cornell University

Large cardinals

- Large cardinals are means to gauge the strength of extensions of ZFC.
- Since the beginning of set theory, set theorists defined stronger notion of large cardinals (Inaccessible, Mahlo, Weakly compact, Measurable, Woodin, Supercompact, etc.)
- Large cardinals stronger than measurable cardinals are usually defined in terms of elementary embedding.

Reinhardt embedding

Reinhardt defined an 'ultimate' form of large cardinal axiom:

Definition

A <u>Reinhardt embedding</u> is a non-trivial elementary embedding $j: V \to V$.

・ロト・白下・・川下・・日・ うくの

Hanul Jeon

Cornell University

メロト メロト メヨト メヨ

Cornell University

Reinhardt embedding

Reinhardt defined an 'ultimate' form of large cardinal axiom:

Definition

A <u>Reinhardt embedding</u> is a non-trivial elementary embedding $j \colon \overline{V \to V}$.

This poor axiom destined an Icarian fate:

Theorem (Kunen 1971)

ZFC proves there is no Reinhardt embedding. In fact, there is no elementary emebdding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$.

Hanul Jeon

イロト イポト イヨト イヨ

Cornell University

(Not in)consistent weakenings

Set theorists studied the non-inconsistent weakening of Reinhardt cardinals:

Definition

- $I_3(\lambda)$: There is an elementary $j: V_\lambda \to V_\lambda$.
- $I_2(\lambda)$: There is a Σ_1 -elementary $j \colon V_{\lambda+1} \to V_{\lambda+1}$.
- $I_1(\lambda)$: There is an elementary $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$.
- $I_0(\lambda)$: There is an elementary $j: L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$.

They are not known to be inconsistent over ZFC.

How to modify the previous proof

Image: A mathematical states and a mathem

What about other options?

We may have a consistent version of Reinhardt embedding over a weakening of ZFC.

Hanul Jeon

Cornell University

What about other options?

We may have a consistent version of Reinhardt embedding over a weakening of ZFC. We do not know the consistency of ZF with a Reinhardt embedding, but

Theorem (Schlutzenberg 2024)

If $\mathsf{ZFC} + \mathrm{I}_0$ is consistent, then so is

$$\mathsf{ZF} + \mathsf{DC}_{\lambda} + \exists j \colon V_{\lambda+2} \to V_{\lambda+2}.$$

Hanul Jeon

Cornell University

< D > < A > < B > <</p>

Image: A math a math

Cornell University

ZFC without powerset

The option we will examine is when we drop the axiom of powerset.

Remark

In ZFC without Replacement, the following are equivalent:

- Replacement
- 2 Collection: For every family of proper classes $\{C_x \mid x \in I\}$ indexed by a set I, we have a family of sets $\{\hat{C}_x \mid x \in I\}$ such that $\hat{C}_x \subseteq C_x$.
- **3** Reflection principle.

It is no longer valid if we drop the Axiom of Powerset.

Image: A math a math

Cornell University

ZFC without Powerset can be weird

Theorem (Gitman-Hamkins-Johnstone 2011)

Let ZFC- be ZFC without Powerset. Then each of the following is consistent with ZFC-:

- **1** ω_1 is singular.
- **2** Every set of reals is countable but ω_1 exists.
- There are sets of reals of size ω_n for n < ω, but none of size ω_ω.
- 4 The failure of Łoś's theorem.

However, ZFC⁻, ZFC without Powerset but Collection, is free from these ill-behaviors.

< □ > < 同 > < Ξ > <</p>

Cornell University

Formulating a Reinhardt embedding

Let us formulate a set theory with Reinhardt embedding j. j is a 'proper class,' but it cannot be definable:

Theorem (Suzuki 1999)

ZF proves there is no definable elementary embedding $j: V \rightarrow V$.

Hence we must introduce a new symbol for a Reinhardt embedding.

< □ > < 同 > < Ξ > <</p>

Cornell University

Definition

 ZFC_j is a first-order theory over the language $\{\in, j\}$ with the following axioms:

- 1 Axioms of ZFC.
- **2** Axiom schemes over the new language $\{\in, j\}$.

 ZFC_j^- is defined similarly. Also, $j\colon V\to V$ is the combination of the following assertions:

- $\exists x(j(x) \neq x).$
- 2 An axiom scheme for the elementarity of j for $\{\in\}$ -formulas: If $\psi(\vec{x})$ is a formula without j, then

$$\forall x[\phi(\vec{x}) \leftrightarrow \phi(j(\vec{x}))].$$

Matthews' proof

How to modify the previous proof

イロト イロト イヨト イヨ

Cornell University

Q&A

Matthews' result

Richard Matthews proved that $ZFC_j^- + j: V \to V$ is consistent:

Theorem (Matthews 2022)

 $ZFC + I_1$ proves there is a transitive model of $ZFC_i^- + j \colon V \to V$.

However, Matthews' model does not satisfy

Definition

An embedding $j: V \to V$ is <u>cofinal</u> if for every set a, there is b such that $a \in j(b)$.

In fact, Hayut proved that ZFC_j^- is inconsistent with a cofinal Reinhardt embedding.

Hanul Jeon

A Cofinal Reinhardt embedding

Question

Is $ZF_i^- + j: V \to V$ consistent with the cofinality of j?

Theorem (J.)

 $\mathsf{ZFC} + \mathrm{I}_0$ proves there is a transitive model of ZF_j^- with a cofinal $j \colon V \to V.$

Hanul Jeon

Cornell University

イロト イヨト イヨト イヨト

• • • • • • • • • • • •

Cornell University

Matthews' proof

Let us sketch the main idea of (a variant of) a proof of Matthews' result.

Observation

Let λ be a strong limit cardinal, and let H_{λ^+} be the set of all hereditarily size $< \lambda^+$ sets:

$$H_{\lambda^+} = \{x : |\operatorname{TC}(x)| < \lambda^+\}.$$

Then we can code every member of H_{λ^+} into a tree of size λ .

Hanul Jeon

(日)、<四)、<三</p>

Cornell University

Hanul Jeon

< □ > < 同 > < Ξ > <</p>

Cornell University

Tree coding

For every well-founded tree T over V_{λ} , we can associate a set $\mathfrak{t}(T)$.

Lemma

For a well-founded tree T, Let us define

$$\mathfrak{t}(T) = \{\mathfrak{t}(T \downarrow \langle x \rangle) \mid \langle x \rangle \in T\}.$$

Then we have the following:

- **1** If T is a well-founded tree over V_{λ} , then $\mathfrak{t}(T) \in H_{\lambda^+}$.
- **2** Every member of H_{λ^+} has a form $\mathfrak{t}(T)$.

Note that even $1 = \{0\}$ has different ways for tree coding, even up to isomorphism.

Image: A mathematical states and a mathem

Example

Matthews' proof

How to modify the previous proof

Example

The following tree codes $3 = \{0, 1, 2\}$:

But we also have a simpler tree coding 3:

Hanul Jeon

Cornell University

Image: A mathematical states and a mathem

Cornell University

Which trees are 'equal'

Definition

Let S and T be well-founded trees. Define $S =^* T$ if and only if there is a binary relation $R \subseteq S \times T$ such that $\langle \langle \rangle, \langle \rangle \rangle \in R$, and $\langle \sigma, \tau \rangle \in R$ iff

$$\forall \langle u \rangle \in (S \downarrow \sigma) \exists \langle v \rangle \in (T \downarrow \tau) [(\sigma^{\frown} \langle u \rangle, \tau^{\frown} \langle v \rangle) \in R], \text{ and }$$

2 and vice versa.

We say $S \in T$ iff there is $\langle u \rangle \in T$ such that $S = T \downarrow \langle u \rangle$.

Theorem

If S, T are well-founded, then
$$S = T$$
 iff $\mathfrak{t}(S) = (T)$. Also,
 $S \in T$ iff $\mathfrak{t}(S) \in (T)$.

Hanul Jeon

イロト イロト イヨト イヨ

Cornell University

Tree interpretation

We can pull a formula over H_{λ^+} into $V_{\lambda+1}$:

Definition

Let ϕ be a formula. Define ϕ^{t} as follows:

1
$$(x \in y)^{\mathfrak{t}} \equiv (x \in y)^{\mathfrak{t}} \equiv (x = y)^{\mathfrak{t}} \equiv (x = y)^{\mathfrak{t}}$$

2
$$(\phi \circ \psi)^{\mathfrak{t}} \equiv \phi^{\mathfrak{t}} \circ \psi^{\mathfrak{t}}. \ (\neg \phi)^{\mathfrak{t}} \equiv \neg \phi^{\mathfrak{t}}. \ (\circ = \land, \lor, \rightarrow.)$$

3 For a quantifier Q,

 $(Qx\phi(x))^{t} \equiv QT[T \text{ is a well-founded tree over } V_{\lambda} \rightarrow \phi^{t}(T)].$

Hanul Jeon

Lemma

For every formula ϕ and well-founded trees T_0, \dots, T_{m-1} over V_{λ} , we have

$$H_{\lambda^+} \vDash \phi(\mathfrak{t}(T_0), \cdots \mathfrak{t}(T_{m-1})) \iff V_{\lambda+1} \vDash \phi^{\mathfrak{t}}(T_0, \cdots T_{m-1}).$$

Cornell University

イロト イロト イヨト イヨ

On a cofinal Reinhardt embedding without powerset

Hanul Jeon

イロト イヨト イヨト イヨト

Cornell University

Pushing $j \colon V_{\lambda+1} \to V_{\lambda+1}$ into H_{λ^+}

Theorem

Let $j\colon V_{\lambda+1}\to V_{\lambda+1}$ be an $I_1\text{-embedding}.$ For a well-founded tree T over $V_\lambda,$ define

$$k(\mathfrak{t}(T)) = \mathfrak{t}(j(T)).$$

Then k is well-defined and an elementary embedding $H_{\lambda^+} \rightarrow H_{\lambda^+}$.

Corollary

$$(H_{\lambda^+}, k)$$
 is a model of $\operatorname{ZFC}_i^- + j \colon V \to V$.

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Finding a cofinal embedding

The resulting embedding is not cofinal by a Kunen inconsistency-type argument.

To get a cofinal elementary embedding, we start from a base model with a stronger property.

Definition (Goldberg-Schlutzenberg 2021)

Let $j: V_{\lambda+n} \to V_{\lambda+n}$ be an elementary emebdding. We say j is <u>cofinal</u> if every $a \in V_{\lambda+n}$ is contained in j(b) for some $b \in V_{\lambda+n}$...

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Finding a cofinal embedding

The resulting embedding is not cofinal by a Kunen inconsistency-type argument.

To get a cofinal elementary embedding, we start from a base model with a stronger property.

Definition (Goldberg-Schlutzenberg 2021)

Let $j: V_{\lambda+n} \to V_{\lambda+n}$ be an elementary emebdding. We say j is <u>cofinal</u> if every $a \in V_{\lambda+n}$ is contained in j(b) for some $b \in V_{\lambda+n}$...

... Is it a correct definition?

Hanul Jeon

・ロト ・回ト ・ヨト・

Cornell University

Cofinal embedding over $V_{\lambda+n}$

Such *b* may not exist when *a* has the largest rank. However, we can still state $a \in j(b)$ for a 'small' subset *b* of $V_{\lambda+n}$:

Definition

Let $a \in V_{\lambda+n}$ be a binary relation. For $i \in \text{dom}(a)$, define

$$(a)_i = \{x \mid \langle i, x \rangle \in a\}.$$

Also, for $a, b \in V_{\lambda+n}$, define

 $(a:b) = \{(a)_i \mid i \in b\}.$

Hanul Jeon

The correct definition of a cofinality over $V_{\lambda+n}$

Definition (Goldberg-Schlutzenberg 2021)

 $j: V_{\lambda+n} \to V_{\lambda+n}$ is <u>cofinal</u> if for every $a \in V_{\lambda+n}$ there is $b, c \in V_{\lambda+n}$ such that $a \in (j(b) : j(c))$.

Theorem (Goldberg-Schlutzenberg 2021)

 $j: V_{\lambda+n} \rightarrow V_{\lambda+n}$ is cofinal iff n is even. In particular, $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$ is cofinal.

Cornell University

< ロ > < 回 > < 回 > < 回 > < 回 >

Hanul Jeon

< 口 > < 同 >

Flat pairing

The previous definitions of (a : b) and $(a)_i$ also have a 'flaw' since the usual Kuratowski ordered pair $\langle a, b \rangle = \{\{a\}, \{a, b\}\}$ raises the rank by +2. Hence we have to use Quine-Rosser flat pairing instead of the usual pairing function.

メロト メロト メヨト メヨ

Cornell University

Definition

Let

$$f(x) = egin{cases} 2x+1 & x \in \omega, \ x & ext{otherwise.} \end{cases}$$

Define $f_0(a) = s[a]$ and $f_1(a) = s[a] \cup \{0\}$, then

1
$$f_0$$
, f_1 are one-to-one.
2 ran $f_0 \cap$ ran $f_1 = \emptyset$.
Define $\langle a, b \rangle = f_0[a] \cup f_1[b]$.

We also need a flat tuple to define trees, whose definition is similar.

Hanul Jeon

イロト イヨト イヨト イヨ

Cornell University

Where to find $V_{\lambda+2}$?

We turn $V_{\lambda+2}$ with an elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$ into a transitive model of $\mathsf{ZF}_j^$ $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$ is inconsistent with ZFC. But...

Theorem (Schlutzenberg 2024)

Let
$$i: L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$$
 be an I₀-embedding. If
 $j = i \upharpoonright V_{\lambda+2}^{L(V_{\lambda+1})}$, then $L(V_{\lambda+1}, j)$ satisfies
1 ZF + DC _{λ} + I₀(λ).
2 $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$ is elementary.
3 $V_{\lambda+2} \subseteq L(V_{\lambda+1})$.

Hanul Jeon

< □ > < 同 > < Ξ > <</p>

Cornell University

The model

Now let us work over the Schlutzenberg's model $L(V_{\lambda+1}, j)$, which is a choiceless model. H_{λ^+} or similar notions do not work well without Choice.

Definition

Let X be a set. H(X) is the union of all transitive sets M such that M is a surjective image of a member of X.

H(X) is a transitive set, and every non-empty set in H(X) is a surjective image of a member of X.

メロト メロト メヨト メヨ

Cornell University

The Collection Principle

We can prove that $H(V_{\lambda+2})$ satisfies all axioms of ZF⁻ except for Collection. For Collection, we need the Collection principle:

Definition (Goldberg)

We say $V_{\lambda+1}$ satisfies the <u>Collection principle</u> if every binary relation $R \subseteq V_{\lambda} \times V_{\lambda+1}$ has a subrelation $S \subseteq R$ of the same domain such that ran S is a surjective image of $V_{\lambda+1}$.

Theorem (Essentially by Goldberg)

 $L(V_{\lambda+1},j)$ thinks $V_{\lambda+2}$ satisfies the Collection principle.

Hanul Jeon

Theorem

The Collection principle for $V_{\lambda+2}$ implies $H(V_{\lambda+2})$ satisfies Collection.

 $L(V_{\lambda+1}, j)$ satisfies the Collection principle for $V_{\lambda+2}$, so $H(V_{\lambda+2}) \vDash ZF^-$ in this model.

Hanul Jeon

Cornell University

メロト メロト メヨト メヨ

イロト イボト イヨト イヨ

Cornell University

The main result

Again, we can define the tree interpretation t satisfying

$$H(V_{\lambda+2}) \vDash \phi(\mathfrak{t}(T_0), \cdots, \mathfrak{t}(T_{m-1})) \iff V_{\lambda+2} \vDash \phi^{\mathfrak{t}}(T_0, \cdots, T_{m-1}).$$

Then we can push $j: V_{\lambda+2} \to V_{\lambda+2}$ to $k: H(V_{\lambda+2}) \to H(V_{\lambda+2})$ by letting $k(\mathfrak{t}(T)) = \mathfrak{t}(j(T))$.

Theorem

In $L(V_{\lambda+1}, j)$, $k \colon H(V_{\lambda+2}) \to H(V_{\lambda+2})$ is a cofinal elementary embedding.

Hanul Jeon

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $\mathfrak{t}(T)$ for some well-founded tree over $V_{\lambda+1}$.

Hanul Jeon

Cornell University

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $\mathfrak{t}(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in i(T')$.

Hanul Jeon

Cornell University

< □ > < 同 > < Ξ > <</p>

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $\mathfrak{t}(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in j(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (j(a) : j(b))$.

Cornell University

< □ > < 同 > < Ξ > <</p>

On a cofinal Reinhardt embedding without powerset

Hanul Jeon

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $\mathfrak{t}(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in ij(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (j(a) : j(b))$. Then define

$$T' = \{\langle x
angle^\frown \sigma \mid x \in b \land \sigma \in (a)_x \land (a)_x \text{ is a well-founded tree} \}$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Cornell University

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $\mathfrak{t}(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in j(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (j(a) : j(b))$. Then define

$$\mathcal{T}' = \{ \langle x
angle^\frown \sigma \mid x \in b \land \sigma \in (a)_x \land (a)_x ext{ is a well-founded tree} \}$$

 $T \in (j(a) : j(b))$ implies there is $z \in j(b)$ such that $T = (j(a))_z$. Hence $T \in j(T')$.

Hanul Jeon

Comparing the two proofs

Matthews' proof	My proof
Working over $ZFC + \mathrm{I}_1$	Schlutzenberg's model
I ₁ embedding $j: V_{\lambda+1} \rightarrow V_{\lambda+1}$.	An embedding $j \colon V_{\lambda+2} \to V_{\lambda+2}$
Turn $V_{\lambda+1}$ to H_{λ^+}	Turn $V_{\lambda+2}$ to $H(V_{\lambda+2})$
Collection holds by Choice	by Collection Principle
A model of ZFC_j^-	A model of ZF_j^- with a cofinal j

・ロト ・回ト ・ヨト

イロト イヨト イヨト イヨト

Cornell University

Questions

Question

How strong the theory ZF_j^- with a cofinal $j: V \to V$ is? For example, does it imply the consistency of $ZFC + I_1$?

Question

Does
$$\mathsf{ZF}_j^-$$
 with a cofinal $j: V \to V$ prove λ^+ or $V_{\lambda+1}$ exists, for $\lambda = \sup_{n < \omega} j^n(\operatorname{crit} j)$?

(Note: $V_{\lambda+1} \in H(V_{\lambda+2})$ in the Schlutzenberg's model.)

Hanul Jeon

Matthews' proof

How to modify the previous proof

Any other Questions?

▲□▶▲□▶▲□▶▲□▶ = つへで

Hanul Jeon

Cornell University

Thank you!

Hanul Jeon

Cornell University

・ロト ・日下・ ・ ヨト・