K ロ ▶ K 何 ▶ K 手

S

On a cofinal Reinhardt embedding without powerset

Hanul Jeon

Cornell University

2024-10-18

CUNY Set theory seminar

[On a cofinal Reinhardt embedding without powerset](#page-42-0)

Hanul Jeon Cornell University

 Ω

[Introduction](#page-2-0) [Matthews' proof](#page-14-0) [How to modify the previous proof](#page-23-0) [Q&A](#page-40-0)

Table of Contents

2 [Matthews' proof](#page-14-0)

3 [How to modify the previous proof](#page-23-0)

K ロ ▶ K 御 ▶ K 舌 Ω

Hanul Jeon Cornell University

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4

 Ω

Large cardinals

- **E** Large cardinals are means to gauge the strength of extensions of ZFC .
- Since the beginning of set theory, set theorists defined stronger notion of large cardinals (Inaccessible, Mahlo, Weakly compact, Measurable, Woodin, Supercompact, etc.)
- **E** Large cardinals stronger than measurable cardinals are usually defined in terms of elementary embedding.

Reinhardt embedding

Reinhardt defined an 'ultimate' form of large cardinal axiom:

Definition

- A Reinhardt embedding is a non-trivial elementary embedding
- $j: V \rightarrow V$.

メロトメ 倒下 メミトメ 209

Hanul Jeon Cornell University

メロトメ 御 トメ ミトメ 毛

 209

Reinhardt embedding

Reinhardt defined an 'ultimate' form of large cardinal axiom:

Definition

A Reinhardt embedding is a non-trivial elementary embedding

 $j: V \rightarrow V$.

This poor axiom destined an Icarian fate:

Theorem (Kunen 1971)

ZFC proves there is no Reinhardt embedding. In fact, there is no elementary emebdding $i: V_{\lambda+2} \to V_{\lambda+2}$.

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

メロメ メ御 メメ ヨメ メヨメ

 209

(Not in)consistent weakenings

Set theorists studied the non-inconsistent weakening of Reinhardt cardinals:

Definition

- **I**₃(λ): There is an elementary *j*: $V_{\lambda} \rightarrow V_{\lambda}$.
- **I** $I_2(\lambda)$: There is a Σ_1 -elementary $j: V_{\lambda+1} \to V_{\lambda+1}$.
- If $I_1(\lambda)$: There is an elementary $i: V_{\lambda+1} \to V_{\lambda+1}$.
- **Iourch** I₀(λ): There is an elementary *j*: $L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$.

They are not known to be inconsistent over ZFC.

[Introduction](#page-2-0) [Matthews' proof](#page-14-0) [How to modify the previous proof](#page-23-0) [Q&A](#page-40-0)

What about other options?

We may have a consistent version of Reinhardt embedding over a weakening of ZFC.

Hanul Jeon Cornell University

 Ω

K ロ ▶ K 御 ▶ K 舌

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{P} \right\} & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right. \right\}$

 QQ

What about other options?

We may have a consistent version of Reinhardt embedding over a weakening of ZFC.

We do not know the consistency of ZF with a Reinhardt embedding, but

Theorem (Schlutzenberg 2024)

If ZFC + I_0 is consistent, then so is

$$
\mathsf{ZF}+\mathsf{DC}_{\lambda}+\exists j\colon V_{\lambda+2}\to V_{\lambda+2}.
$$

Hanul Jeon Cornell University

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow

 Ω

ZFC without powerset

The option we will examine is when we drop the axiom of powerset.

Remark

In ZFC without Replacement, the following are equivalent:

- 1 Replacement
- 2 Collection: For every family of proper classes $\{C_x \mid x \in I\}$ indexed by a set I, we have a family of sets $\{\hat{C}_x \mid x \in I\}$ such that $\hat{C}_x \subseteq C_x$.
- **3** Reflection principle.

It is no longer valid if we drop the Axiom of Powerset.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow

 209

ZFC without Powerset can be weird

Theorem (Gitman-Hamkins-Johnstone 2011)

Let ZFC− be ZFC without Powerset. Then each of the following is consistent with ZFC−:

- \Box ω_1 is singular.
- 2 Every set of reals is countable but ω_1 exists.
- 3 There are sets of reals of size ω_n for $n < \omega$, but none of size ωω.
- **4** The failure of Los's theorem.

However, ZFC⁻, ZFC without Powerset but Collection, is free from these ill-behaviors.

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow \rightarrow $\overline{\rightarrow}$ \rightarrow \rightarrow

 Ω

Formulating a Reinhardt embedding

Let us formulate a set theory with Reinhardt embedding i . i is a 'proper class,' but it cannot be definable:

Theorem (Suzuki 1999)

ZF proves there is no definable elementary embedding $j: V \rightarrow V$.

Hence we must introduce a new symbol for a Reinhardt embedding.

メロトメ 倒 トメ ミトメ 毛

 Ω

Definition

ZFC $_j$ is a first-order theory over the language $\{\in, j\}$ with the following axioms:

- **1** Axioms of ZFC.
- 2 Axiom schemes over the new language $\{\in, j\}$.

 ZFC^-_j is defined similarly. Also, $j\colon V\to V$ is the combination of the following assertions:

- $\exists x (i(x) \neq x).$
- 2 An axiom scheme for the elementarity of j for $\{\in\}$ -formulas: If $\psi(\vec{x})$ is a formula without j, then

 $\forall x [\phi(\vec{x}) \leftrightarrow \phi(j(\vec{x}))].$

メロメメ 倒す メミメメ 毛

 209

Matthews' result

Richard Matthews proved that $\mathsf{ZFC}^-_j + j \colon V \to V$ is consistent:

Theorem (Matthews 2022)

 $\mathsf{ZFC} + \mathrm{I}_1$ proves there is a transitive model of $\mathsf{ZFC}_j^- + j \colon V \to V$.

However, Matthews' model does not satisfy

Definition

An embedding $j: V \rightarrow V$ is cofinal if for every set a, there is b such that $a \in i(b)$.

In fact, Hayut proved that ZFC ^-_j is inconsistent with a cofinal Reinhardt embedding.

Hanul Jeon Cornell University

メロメ メ都 メメ きょく きょう

 209

A Cofinal Reinhardt embedding

Question

Is $ZF_j^-+j\colon V\to V$ consistent with the cofinality of j?

Theorem (J.)

 $\mathsf{ZFC} + \mathrm{I}_0$ proves there is a transitive model of ZF^-_j with a cofinal $j: V \rightarrow V$.

Hanul Jeon Cornell University

メロメ メタメメ ミメメ 毛

 209

Matthews' proof

Let us sketch the main idea of (a variant of) a proof of Matthews' result.

Observation

Let λ be a strong limit cardinal, and let $H_{\lambda+}$ be the set of all hereditarily size $< \lambda^+$ sets:

$$
H_{\lambda^+}=\{x:|\mathsf{TC}(x)|<\lambda^+\}.
$$

Then we can code every member of $H_{\lambda+}$ into a tree of size λ .

K ロ ⊁ K 伊 ⊁ K 毛

 \mathbf{p} \rightarrow 299

Hanul Jeon Cornell University

メロトメ 倒 トメ ミトメ 毛

 Ω

Tree coding

For every well-founded tree T over V_{λ} , we can associate a set $f(T)$.

Lemma

For a well-founded tree T, Let us define

$$
\mathfrak{t}(\mathcal{T})=\{\mathfrak{t}(\mathcal{T}\downarrow\langle x\rangle)\mid\langle x\rangle\in\mathcal{T}\}.
$$

Then we have the following:

- **1** If T is a well-founded tree over V_{λ} , then $\mathfrak{t}(T) \in H_{\lambda+1}$.
- 2 Every member of H_{λ^+} has a form t(T).

Note that even $1 = \{0\}$ has different ways for tree coding, even up to isomorphism.

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

K ロ ▶ K 御 ▶ K 舌

 \mathbf{p}

Example

 299

[Introduction](#page-2-0) [Matthews' proof](#page-14-0) [How to modify the previous proof](#page-23-0) [Q&A](#page-40-0)

KIDIN \leftarrow

Example

The following tree codes $3 = \{0, 1, 2\}$:

But we also have a simpler tree coding 3:

Hanul Jeon Cornell University

 QQ

K ロ ▶ K 何 ▶ K 手

 Ω

Which trees are 'equal'

Definition

Let S and T be well-founded trees. Define $S = * T$ if and only if there is a binary relation $R \subseteq S \times T$ such that $\langle \langle \rangle, \langle \rangle \rangle \in R$, and $\langle \sigma, \tau \rangle \in R$ iff

$$
\mathbf{I} \ \ \forall \langle u \rangle \in (S \downarrow \sigma) \exists \langle v \rangle \in (T \downarrow \tau) \big[(\sigma \widehat{} \langle u \rangle, \tau \widehat{} \langle v \rangle) \in R \big], \text{ and}
$$

2 and vice versa.

We say $S \in T$ iff there is $\langle u \rangle \in \mathcal{T}$ such that $S = \mathcal{T} \downarrow \langle u \rangle$.

Theorem

If S, T are well-founded, then
$$
S =^* T
$$
 iff $t(S) = (T)$. Also, $S \in^* T$ iff $t(S) \in (T)$.

Hanul Jeon Cornell University

メロメ メ御 メメ ヨメ メヨメ

 209

Tree interpretation

We can pull a formula over $H_{\lambda+}$ into $V_{\lambda+1}$:

Definition

Let ϕ be a formula. Define $\phi^\mathfrak{t}$ as follows:

$$
(x \in y)^{\mathfrak{t}} \equiv (x \in^* y). (x = y)^{\mathfrak{t}} \equiv (x =^* y).
$$

$$
\mathbf{2} \ (\phi \circ \psi)^{\mathfrak{t}} \equiv \phi^{\mathfrak{t}} \circ \psi^{\mathfrak{t}}. \ (\neg \phi)^{\mathfrak{t}} \equiv \neg \phi^{\mathfrak{t}}. \ (\circ = \wedge, \vee, \rightarrow)
$$

3 For a quantifier Q,

 $(\mathsf{Q} \mathsf{x} \phi(\mathsf{x}))^\mathfrak{t} \equiv \mathsf{Q} \, \mathcal{T}[\, \mathcal{T} \,$ is a well-founded tree over $\mathcal{V}_\lambda \to \phi^\mathfrak{t}(\, \mathcal{T})]$.

Hanul Jeon Cornell University

Lemma

For every formula ϕ and well-founded trees T_0, \dots, T_{m-1} over V_{λ} , we have

$$
H_{\lambda^+}\vDash\phi(\mathfrak{t}(\mathcal{T}_0),\cdots\mathfrak{t}(\mathcal{T}_{m-1}))\iff V_{\lambda+1}\vDash\phi^{\mathfrak{t}}(\mathcal{T}_0.\cdots\mathcal{T}_{m-1}).
$$

∍ Hanul Jeon Cornell University

×

 299

メロメ メタメメ ミメメ 毛

メロメメ 倒 メメ きょく きょう

 Ω

Pushing $j: V_{\lambda+1} \to V_{\lambda+1}$ into H_{λ^+}

Theorem

Let $i: V_{\lambda+1} \to V_{\lambda+1}$ be an I₁-embedding. For a well-founded tree T over V_{λ} , define

 $k(t(T)) = t(j(T)).$

Then k is well-defined and an elementary embedding $H_{\lambda^+} \to H_{\lambda^+}$.

Corollary

$$
(H_{\lambda^+}, k)
$$
 is a model of $ZFC_j^- + j: V \to V$.

Hanul Jeon Cornell University

メロトメ 御 トメ ミトメ 毛

 Ω

Finding a cofinal embedding

The resulting embedding is not cofinal by a Kunen inconsistency-type argument.

To get a cofinal elementary embedding, we start from a base model with a stronger property.

Definition (Goldberg-Schlutzenberg 2021)

Let $j: V_{\lambda+n} \to V_{\lambda+n}$ be an elementary emebdding. We say j is cofinal if every $a \in V_{\lambda+n}$ is contained in $j(b)$ for some $b \in V_{\lambda+n}$...

メロトメ 御 トメ ミトメ 毛

 Ω

Finding a cofinal embedding

The resulting embedding is not cofinal by a Kunen inconsistency-type argument.

To get a cofinal elementary embedding, we start from a base model with a stronger property.

Definition (Goldberg-Schlutzenberg 2021)

Let $j: V_{\lambda+n} \to V_{\lambda+n}$ be an elementary emebdding. We say j is cofinal if every $a \in V_{\lambda+n}$ is contained in $j(b)$ for some $b \in V_{\lambda+n}$...

... Is it a correct definition?

メロメ メタメメ ミメメ 毛

 209

Cofinal embedding over $V_{\lambda+n}$

Such *b* may not exist when *a* has the largest rank. However, we can still state $a \in j(b)$ for a 'small' subset b of $V_{\lambda+n}$:

Definition

Let $a \in V_{\lambda+n}$ be a binary relation. For $i \in \text{dom}(a)$, define

$$
(a)_i = \{x \mid \langle i, x \rangle \in a\}.
$$

Also, for $a, b \in V_{\lambda+n}$, define

 $(a : b) = \{(a)_i | i \in b\}.$

Hanul Jeon Cornell University, and the cornell University of the cornell University, and the cornell University,

The correct definition of a cofinality over $V_{\lambda+n}$

Definition (Goldberg-Schlutzenberg 2021)

 $j: V_{\lambda+n} \to V_{\lambda+n}$ is cofinal if for every $a \in V_{\lambda+n}$ there is $b, c \in V_{\lambda+n}$ such that $a \in (i(b) : i(c))$.

Theorem (Goldberg-Schlutzenberg 2021)

 $j: V_{\lambda+n} \to V_{\lambda+n}$ is cofinal iff n is even. In particular, j: $V_{\lambda+2} \to V_{\lambda+2}$ is cofinal.

Hanul Jeon Cornell University

 209

メロトメ 倒 トメ ミトメ ミト

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \equiv

Flat pairing

The previous definitions of $(a : b)$ and $(a)_i$ also have a 'flaw' since the usual Kuratowski ordered pair $\langle a, b \rangle = {\{a\}, \{a, b\}}$ raises the rank by $+2$. Hence we have to use Quine-Rosser flat pairing instead of the usual pairing function.

 Ω

メロメ メタメメ ミメメ 毛

∍

 Ω

Definition

Let

$$
s(x) = \begin{cases} 2x + 1 & x \in \omega, \\ x & \text{otherwise.} \end{cases}
$$

Define $f_0(a) = s[a]$ and $f_1(a) = s[a] \cup \{0\}$, then

\n- **1**
$$
f_0
$$
, f_1 are one-to-one.
\n- **2** ran $f_0 \cap \text{ran } f_1 = \emptyset$.
\n- Define $\langle a, b \rangle = f_0[a] \cup f_1[b]$.
\n

We also need a flat tuple to define trees, whose definition is similar.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

メロトメ 御 トメ ミトメ 毛

 209

Where to find $V_{\lambda+2}$?

We turn $V_{\lambda+2}$ with an elementary embedding $j: V_{\lambda+2} \to V_{\lambda+2}$ into a transitive model of ZF $_f^$ $j: V_{\lambda+2} \to V_{\lambda+2}$ is inconsistent with ZFC. But...

Theorem (Schlutzenberg 2024)

Let *i*:
$$
L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})
$$
 be an I_0 -embedding. If
\n $j = i \upharpoonright V_{\lambda+2}^{L(V_{\lambda+1})}$, then $L(V_{\lambda+1}, j)$ satisfies
\n**1** $ZF + DC_{\lambda} + I_0(\lambda)$.
\n**2** *j*: $V_{\lambda+2} \rightarrow V_{\lambda+2}$ is elementary.
\n**3** $V_{\lambda+2} \subseteq L(V_{\lambda+1})$.

Hanul Jeon Cornell University

メロトメ 倒 トメ ミトメ 毛

 Ω

The model

Now let us work over the Schlutzenberg's model $L(V_{\lambda+1}, j)$, which is a choiceless model. H_{λ^+} or similar notions do not work well without Choice.

Definition

Let X be a set. $H(X)$ is the union of all transitive sets M such that M is a surjective image of a member of X.

 $H(X)$ is a transitive set, and every non-empty set in $H(X)$ is a surjective image of a member of X .

メロメメ 倒す メミメメ 毛

 209

The Collection Principle

We can prove that $H(V_{\lambda+2})$ satisfies all axioms of ZF⁻ except for Collection. For Collection, we need the Collection principle:

Definition (Goldberg)

We say $V_{\lambda+1}$ satisfies the Collection principle if every binary relation $R \subseteq V_{\lambda} \times V_{\lambda+1}$ has a subrelation $S \subseteq R$ of the same domain such that ran S is a surjective image of $V_{\lambda+1}$.

Theorem (Essentially by Goldberg)

 $L(V_{\lambda+1}, j)$ thinks $V_{\lambda+2}$ satisfies the Collection principle.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

メロメ メタメメ ミメメ 毛

 Ω

Theorem

The Collection principle for $V_{\lambda+2}$ implies $H(V_{\lambda+2})$ satisfies Collection.

 $L(V_{\lambda+1}, j)$ satisfies the Collection principle for $V_{\lambda+2}$, so $H(V_{\lambda+2}) \models ZF^-$ in this model.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

メロメ メ御 メメ きょ メ ヨメ

 209

The main result

Again, we can define the tree interpretation t satisfying

$$
H(V_{\lambda+2}) \vDash \phi(\mathfrak{t}(T_0), \cdots, \mathfrak{t}(T_{m-1})) \iff V_{\lambda+2} \vDash \phi^{\mathfrak{t}}(T_0, \cdots, T_{m-1}).
$$

Then we can push $j: V_{\lambda+2} \to V_{\lambda+2}$ to $k: H(V_{\lambda+2}) \to H(V_{\lambda+2})$ by letting $k(t(T)) = t(j(T))$.

Theorem

In $L(V_{\lambda+1}, j)$, $k: H(V_{\lambda+2}) \rightarrow H(V_{\lambda+2})$ is a cofinal elementary embedding.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $f(T)$ for some well-founded tree over $V_{\lambda+1}$.

> メロメ メタメ メミメス 299 ∍

Hanul Jeon Cornell University

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $f(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in^* j(T')$.

Hanul Jeon Cornell University Cornell University Cornell University Cornell University Cornell University

 Ω

メロメ メタメ メミメメ

 Ω

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $f(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in^* j(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (j(a) : j(b))$.

Hanul Jeon Cornell University

メロメ メタメ メミメメ

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $f(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in^* j(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (j(a) : j(b))$. Then define

$$
\mathcal{T}' = \{ \langle x \rangle \cap \sigma \mid x \in b \land \sigma \in (a)_x \land (a)_x \text{ is a well-founded tree} \}
$$

 209

メロメ メタメメ ミメメ 毛

メロメ メタメメ ミメメ 毛

 Ω

Proof.

Every set in $H(V_{\lambda+2})$ is of the form $f(T)$ for some well-founded tree over $V_{\lambda+1}$. Thus we prove: For every well-founded tree T we can find T' such that $T \in^* j(T')$. $T \in V_{\lambda+2}$, so by the cofinality of j, we can find sets $a, b \in V_{\lambda+2}$ such that $T \in (i(a) : i(b))$. Then define

$$
\mathcal{T}' = \{ \langle x \rangle \cap \sigma \mid x \in b \land \sigma \in (a)_x \land (a)_x \text{ is a well-founded tree} \}
$$

 $T \in (i(a) : j(b))$ implies there is $z \in j(b)$ such that $T = (i(a))_z$. Hence $T \in^* j(T')$.

K ロ ⊁ K 伊 ⊁ K 毛

B

 299

Comparing the two proofs

Hanul Jeon Cornell University

メロメ メ御 メメ きょ メ ヨメ

 209

Questions

Question

How strong the theory ZF_{j}^+ with a cofinal $j\colon V\to V$ is? For example, does it imply the consistency of $ZFC + I_1$?

Question

Does
$$
ZF_j^-
$$
 with a cofinal $j: V \to V$ prove λ^+ or $V_{\lambda+1}$ exists, for $\lambda = \sup_{n < w} j^n(\text{crit } j)$?

(Note: $V_{\lambda+1} \in H(V_{\lambda+2})$ in the Schlutzenberg's model.)

Hanul Jeon Cornell University

[Introduction](#page-2-0) [Matthews' proof](#page-14-0) [How to modify the previous proof](#page-23-0) [Q&A](#page-40-0)

Any other Questions?

290 + □ ▶ + *□* ▶

Hanul Jeon Cornell University

Thank you!

K ロ ト K 倒 ト K 差 ト K 299 ∍ €

Hanul Jeon Cornell University