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Strength of natural theories

For two theories S and T, define
S<con T < (Con(T) — Con(S))

and
S<con T < TF Con(S).
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Phenomenon

For two ‘natural’ theories S and T, either
S <Con TorT <cCon S.
Also, there is no sequence of ‘natural’ theories

TO >Con 7_1 >Con T2 >Con """ -

Various people pointed out that it holds (Steel, Koellner, Simpson,
Montalban, etc.)
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<con Is ill-behaved

Theorem (Folklore)

There are theories Tg and Ty such that neither To <con T1 nor
Tl §Con TO-

Also, there are theories (T, | n < w) such that

To >con T1 >con T2 >con " -
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What is wrong?

In practice, when we prove Con(T) from T’, we actually prove
stronger statements. (For example, the existence of a transitive

model of T.)
<con is too ‘fine’ to catch the behavior of the strength of natural

theories.
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Proof-theoretic ordinal

Proof theorists found a characteristic gauging the strength of a
theory linearly.

Definition

For a theory T, let us define the proof-theoretic ordinal of T by

| Tlwo = sup{|a] : « is a recursive linear order
such that T+ WO(a)}.
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|[PA|wo = |ACAo|lwo = €0 (Gentzen)
|ACA(J)F|WO = ¢, (0)

|ATRo|wo = To

IKPlwo = ¥a(ea+1)-

Hanul Jeon Cornell University

Proof theory for higher pointclasses



Introduction
00000@000000

Example

|[PA|wo = |ACAo|lwo = €0 (Gentzen)
|ACA(J)F|WO = ¢, (0)

|ATRo|wo = To

IKPlwo = ¥a(ea+1)-

It does not precisely gauge the strength of a theory, e.g.,
‘ T|WO = | T+ COh(T)’WO

Then what does | T|wo gauge?
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Another phenomenon for natural theories

The only practical tools to get theories of the same strength are
forcing and inner models, and they do not change ¥ 3-consequences
by Shoenfield absoluteness.

Phenomenon

For every ‘sufficiently strong’ set theory S and T, either

Also, the size of the ¥3-consequences of T is determined by the

strength of T:
ng% T < S<con T.

It fails for ‘unnatural’ examples.
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Also, if we have large cardinals, then we cannot change
M2 -consequences of a theory.

Phenomenon (Steel)

For every S and T including roughly ZFC + PD (or ZFC with
infinitely many Woodin cardinals),

Sgnéo T or Tgnéo 5

Also, we have
Sg,—,éo T < S <con T.
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Also, if we have large cardinals, then we cannot change
M2 -consequences of a theory.

Phenomenon (Steel)

For every S and T including roughly ZFC + PD (or ZFC with
infinitely many Woodin cardinals),

5 gnéo TorT gnéo 5
Also, we have

Sg,—,éo T < S <con T.

Question

Can we explain why they happen?
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Kleene normal form theorem

Theorem (Kleene, ACAg)

For every Mi-formula ¢(X) and a real A, we can find an
A-recursive linear order o such that

d(A) <> WO(a).

Recall the definition of | T|wo: it is a supremum of all recursive
well-orders whose well-orderedness is provable from T.

Then does | T|wo say something about the MMi-consequences of T7
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Characterizing Ordinal Analysis

Theorem (Walsh 2023)
For Mi-sound theories S, T extending ACA,

1
ISIWO < ’T‘WO ~— S g% T.
Here

1
SQ)I_I:} T means SFEL ¢ = T X1 ¢ for all ¢ € M1,
1

T 2 ¢ is ‘¢ is provable from T with true ¥} sentences.’
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[-reflection

To describe the well-foundedness of the strength of theories, we
need an appropriate analogue of Con(T) for ﬂ% sentences:

Definition

For a class of formulas I', T-RFN(T) is the assertion

Vo e T[T+ ¢ — ¢ is true].

Con(T) is equivalent to MY-RFN(T).
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Theorem (Walsh 2023)

For arithmetically definable Mi-sound theories S, T extending
ACA,

ISlwo < |Tlwo <= ACA FE MI-RFN(T) — Ni-RFN(S).

Also,

Theorem

For arithmetically definable M}-sound theories S, T extending
ACA,, .
ISlwo < | Tlwo <= T F>1 M{-RFN(S).

Hanul Jeon Cornell University

Proof theory for higher pointclasses



Dilators and ptykes
©0000000

Why dilators?

Ordinals capture the strength of theories, but they only gauge the
Mi-consequences of a theory.

Girard developed the notion of dilators and ptykes to describe the
N3- and Ni-proof theory; i.e. the proof theory for Mi-consequences
of a theory.
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An example: Class ordinals

Example

There is no transitive class isomorphic with Ord + Ord, but there is
a way to represent it.

Let X be the class of pairs of the form (0, &) or (1,€) for an ordinal
&, and impose an order over X as follows:

m (i,n) < (i,&)iffn <&,
m (0,7n) < (1,¢) always holds.
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An example: Class ordinals

Example

There is no transitive class isomorphic with Ord + Ord, but there is
a way to represent it.

Let X be the class of pairs of the form (0, &) or (1,€) for an ordinal
&, and impose an order over X as follows:

m (i,n) < (i,&)iffn <&,
m (0,7n) < (1,¢) always holds.

Observation: The above construction is ‘uniform.’
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Dilators

Let F be a map sending « to the expression for a4+ . Then

We can extend F to a functor from the category of linear
orders to the same category.

F preserves direct limits and pullbacks.

If « is a well-order, then so is F().
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Dilators

Let F be a map sending « to the expression for a4+ . Then

We can extend F to a functor from the category of linear
orders to the same category.

F preserves direct limits and pullbacks.

If « is a well-order, then so is F().

Definition
A predilator is a functor from the category of linear orders LO to

LO preserving direct limits and pullbacks.
A predilator F is a dilator if F(«) is a well-order when « is.
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Dilators look too ‘large,’ but it turns out that we can recover a
dilator from its small part:

Lemma

Every predilator is determined by its restriction to the category of
finite ordinals.
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Dilators look too ‘large,’ but it turns out that we can recover a
dilator from its small part:

Lemma

Every predilator is determined by its restriction to the category of
finite ordinals.

A predilator D is countable if D(n) is countable for each n € N (if
viewed as objects of the category of finite ordinals.)

A countable predilator D is A-recursive if we can code D into an
A-recursive set.
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The higher Kleene normal form theorem

Dilators represent [N3-sentences like ordinals represent
Mi-sentences.

Theorem (Girard, ACAp)

For every N3-formula ¢(X) and a real A, we can find an
A-recursive predilator D such that

¢(A) < D is a dilator.
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Proof-theoretic dilator

For a theory T, define

|T],—,% =Y {D | D is a recursive predilator such that
T = D is a dilator}.

\T|n% is unique up to bi-embeddability.
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Ptykes (sing. ptyx) are ‘higher’ versions of dilators.

Let FN° be the category of linear orders, and for two categories C
and D, let C — D be the category of continuous® functors from C
to D.

Define the category of n-preptykes FN” := FN"~! — FN°. An

Definition

n-preptyx P is an n-ptyx if it safisfies

Vr[mis an (n — 1)-ptyx = P(x) is well-ordered].

!Preserving direct limits and pullbacks
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We can also encode n-ptykes into a small set, and define countable
n-ptykes and A-recursive ptykes.

Theorem (Girard, ACAp)

For every MY, ., -formula ¢(X) and a real A, we can find an
A-recursive n-preptyx P such that

¢(X) <= P is an n-ptyx.

We can define \T!,—,1+1 as the sum of all T-provably recursive
n-ptykes.
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Non-linearity

Unfortunately, proof-theoretic ptykes are not ordinals, and they are
not linearly comparable.
Also, I'I%—consequences are never linearly comparable:

Theorem (Aguilera-Pakhomov)

There is no ordinal characteristic o(T) for a theory T satisfying

o(S) < o(T) == S gﬁi T.2

2|t is still well-founded.
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Linearity: Case X}

Recall the statement of M3-completeness of dilators: Every
M3-statement ¢(X) is equivalent to ‘D is a dilator’ for an
X-recursive predilator D.

Corollary

For every ¥3-statement ¢(X) and a real A, we can find an
A-recursive predilator D such that

¢(A) <= D is not a dilator.
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Pseudodilators

Let us call a prediltor D an pseudodilator if D is not a dilator.
Each pseudodilator D is associated with an ordinal:

Definition

For an pseudodilator D, the climax Clim(D) of D is the least
ordinal « such that D(«) is ill-founded.

Pseudodilators express more ordinals in the following sense:

Example

The supremum of all ordertypes of recursive well-orders is wa.

The supremum of all Clim(D) for a recursive pseudodilator D is 43.
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3 1-proof-theoretic ordinal

For a theory T, define

s3(T) = sup{Clim(D) | D is a recursive predilator and
T+ D is not a dilator}

m s3(ACAg) = s3(KP) = wiK,
m s3(M}-CAp) = wSK.

m (Aguilera) s3(M3-CAg) = sup,,, 5.3

30, is the least ordinal with elementary chains of length n;
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1(T) and the height of transitive models of T

Question

For every ‘reasonably small’ (e.g., recursive) «, do we have

s3(ID<14a) = wSK?

Conjecture

For every ¥3-sound r.e. extension T of M}-CAq, we have
s3(T) = min{M N Ord | M transitive and M = ATRy + Z3(T)}.

Where ¥3(T) is the set of all X3-consequences of T.
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Comparing Y i-consequences

Theorem (J.)

For Y3-sound theories S, T extending ACAy,
5(S)<sHT) < SC_:T.

Also for arithmetically definable ¥-sound theories S, T extending
Z%—ACO, we have

s1(S) < sH(T) < ¥L-ACo ™ T1-RFN(T) — Z3-RFN(S).
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So far, we have the linearity of M} and 3 consequences of a
theory. But they enjoy a descriptive set theoretic property: the
prewellordering property.

I'I% also has the prewellordering property, which hints at the
linearity of Mi-consequences. But it requires Al-Determinacy.
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Universal dilator

We need a special parameter to compare I'I%—consequences linearly:

Definition

A dilator D is universal if it embeds every countable dilator.

There is a natural way to define a universal dilator Q' from the
sharps of reals.
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Measurable dilator

Measurable dilator is a special type of universal dilator admitting a
system of measures:

Definition
A universal dilator ® is measurable if there are measures
{uq | d finite dilator} over ®? such that
(Coherence) For i: d — d’, let i*: 4" — &9 by i*(p) = poi.
Then X € pg <= (i*)7Y[X] € par-
(o-completeness) For each Xy € ®4 and a countable dilator

D, we can find e € ®P such that for every p: d — D, we
have eo p € Xj.

If there is a measurable dilator, then Al-Determinacy holds.
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Case M} (cont'd)

Let us work over ZFC with the existence of a measurable dilator ¢.

Theorem (J.)

For every I'I%—sound theories S, T extending ACAq + A%—Det, we

have -
[S5Iny(®) < [Tlny(®) == SCpi T.

Theorem (J.)

For arithmetically definable N}-sound theories S, T extending
ACAq + A%—Det, we have

|SIny(®) < | TIpy(®) <= ACAg F=3 MI-RFN(T) — N3-RFN(S).
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Future directions

It looks like that my arguments for 1 and M} generalize to all £3,
and I—I%n_ﬂ, so the following should hold:

Guess (The odd case)

For arithmetically definable M}, ;-sound theories S, T extending
ACAq + A}, -Det, the following are all equivalent:
2n 2n
Sk (Q27) < [Ty (227),
sl
SCut T,
2n+1

ACAo F¥3 M}, -RFN(T) — M3, -RFN(S).

where Q2" is a measurable 2n-ptyx.
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Guess (The even case)

We can define s3 (T) with ‘2n-antiptykes’ satisfying the following:
For arithmetically definable 3 -sound theories S, T extending
¥3,-ACo + A}, ,-Det, the following are all equivalent:

$32(5) < 53,(T),
s T

=51 1
z2n

Y1 -ACo FMn X3 _RFN(T) — X1 -RFN(S).
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Going further?

Steel also stated the following observation in his paper:

Phenomenon (Steel)

For natural theories S, T extending ZFC plus ‘there are infinitely
many Woodin cardinals and a measurable above,” we have

(Th(L(R))s < (Th(L(R))7 or (Th(L(R))T < (Th(L(R))s.

Here (Th(L(R))T is the set of all statements over L(R) that is
T-provable.

Can we find a proof-theoretic characteristic and an ordinal
characteristic capturing (Th(L(R))77?
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Thank you!
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