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Measurable cardinals

Defined in terms of ultrafilters

Scott (1961) associated measurable cardinals with elementary
embeddings:

Definition

Let M ⊆ V be a transitive class.

j : V → M is an elementary embedding if j respects all first-order
formulas, that is,

V |= ϕ(a⃗) ⇐⇒ M |= ϕ(j(a⃗)).

The critical point crit j of an elementary embedding j : V → M is
the least ordinal moved by j .
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Theorem (Scott 1961)

A cardinal κ is measurable if and only if it is a critical point of
some elementary embedding j : V → M.

Theorem (Scott 1961)

Measurable cardinals do not exist in L.

Generalizations of measurable cardinals were extensively studied by
various people. (For example, Solovay-Reinhardt-Kanamori 1978).
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Reinhardt’s dream

The attempt to find a stronger notion of large cardinal bore the
notion now known as a Reinhardt cardinal.

Definition

A Reinhardt cardinal is a critical point of an elementary embedding
j : V → V .
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Flying too close to the sun – Kunen Inconsistency

Kunen (1971) proved that Reinhardt’s notion cannot be realized
over ZFC:

Theorem (Kunen Inconsistency theorem, 1971)

Work over ZFC, there is no Reinhardt cardinals.
In fact, there is no elementary embedding j : Vλ+2 → Vλ+2

It is still open whether a Reinhardt cardinal is compatible with ZF,
that is, in the choiceless context.
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Night Flying: Choiceless large cardinals

Some difficulties in working without the axiom of choice:

Not all cardinal correspond to an ordinal.

Not all successor cardinal are regular.

Constructions and proofs become harder.

Needs to consider more before applying the known results.
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Super Reinhardt cardinals

Definition

A cardinal κ is

Super Reinhardt if for each ordinal α we can find an
elementary embedding j : V → V such that crit j = κ and
j(κ) > α.

A-super Reinhardt for a class A if for each ordinal α we can
find an elementary embedding for A-formulas j : V → V such
that crit j = κ and j(κ) > α.

Super Reinhardt sets were defined by Woodin in 1983, and
extensively studied in the mid-2010s in the context of Woodin’s
HOD-dichotomy.
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Totally Reinhardt cardinals

Definition

We call Ord is totally Reinhardt if for every class A we can
find a cardinal κ which is A-super Reinhardt.

κ is totally Reinhardt if
(Vκ,Vκ+1) |= Ord is totally Reinhardt.
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The Wholeness axiom

Before defining the Wholeness axiom, let us analyze the definition
of a Reinhardt cardinal:

Definition

ZFC with a Reinhardt cardinal is a theory comprising:

Language: ∈ and a unary function symbol j ,

Axioms: Usual axioms of ZFC, with the elementarity of j , and
Separation and Replacement for j-formulas.

Definition (Corazza 2000)

The Wholeness Axiom WA is obtained by restricting Replacement
to formulas with no j .
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We can further weaken WA as follows:

Definition

The theory Basic Theory of Elementary Embedding (BTEE) is
claim that j : V → V is a elementary embedding. BTEE does not
subsume Separation and Replacement for j-formulas.

That is, we obtain BTEE by dropping Separation for j-formulas
from WA.
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IZF and CZF: A brief history

(H. Friedman, 1973) Intuitionistic ZF (IZF) with the
double-negation translation between IZF and ZF.

Various attempts to formalize the foundation for Bishop-styled
constructive mathematics.

Myhill’s constructive set theory CST.

(Aczel, 1978) Constructive ZF and its type-theoretic
interpretation.
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Axioms of ZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a ↔ x ∈ b).

2 Pairing: {a, b} exists.

3 Union:
⋃
a exists.

4 Separation: {x ∈ a | ϕ(x)} exists,

5 Replacement: {F (x) | x ∈ a} exists if F is a class function.

6 Power set: P(a) = {x | x ⊆ a} exists.

7 Regularity: Every set has a ∈-minimal element.

8 Infinity: N exists.
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Axioms of IZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a ↔ x ∈ b).

2 Pairing: {a, b} exists.

3 Union:
⋃
a exists.

4 Separation: {x ∈ a | ϕ(x)} exists.

5 Collection: if ∀x ∈ a∃yϕ(x , y), then there is b such that
∀x ∈ a∃y ∈ bϕ(x , y)

6 Power set: P(a) = {x | x ⊆ a} exists.

7 Set Induction: ∀a[[∀x ∈ aϕ(x)] → ϕ(a)] → ∀aϕ(a)
8 Infinity: N exists.
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Axioms of CZF

Definition

1 Extensionality: a = b ⇐⇒ ∀x(x ∈ a ↔ x ∈ b).

2 Pairing: {a, b} exists.

3 Union:
⋃
a exists.

4 Bounded Separation: {x ∈ a | ϕ(x)} exists if ϕ is bounded.

5 Strong Collection: if ∀x ∈ a∃yϕ(x , y), then there is b such
that ∀x ∈ a∃y ∈ bϕ(x , y) and ∀y ∈ b∃x ∈ aϕ(x , y).

6 Subset Collection: There is a full subset of mv(a, b).

7 Set Induction: ∀a[[∀x ∈ aϕ(x)] → ϕ(a)] → ∀aϕ(a)
8 Infinity: N exists.
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Differences between IZF and CZF

IZF

1 Full separation

2 Powerset

3 Impredicative

4 Equiconsistent with ZF

CZF

1 Bounded separation

2 Subset collection

3 Allows type-theoretic
interpretation

4 Far more weaker than ZF
and more...
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Large set axioms

Ordinals over constructive set theories are not well-behaved.

Examples (CZF)

Every ordinal is well-ordered =⇒ Excluded Middle for ∆0-formulas,
α ⊆ β does not imply α ∈ β or α = β.

We define large cardinal properties over constructive set
theories by mimicking the structural properties of Hκ and Vκ.
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Multi-valued functions

The notion of multi-valued function provides a syntactic sugar for
Collection.

Definition (Multi-valued function)

Let A and B be classes. We call a relation R of domain A and
codomain B a multi-valued function from A to B. (Notation:
R : A ⇒ B)

Definition (Subimage)

If R : A ⇒ B and R−1 : B ⇒ A, we write R : A ⇔⇒ B, and we call B
a subimage of R.

Multi-valued functions replace functions in CZF-context.
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From Replacement to Strong Collection

Definition (Replacement)

If F : a → V is a first-order definable class function, then we can
find a set image b of F .

Definition (Strong Collection)

If R : a ⇒ V is a first-order definable class multi-valued function,
then we can find a set subimage b of R. (That is, R : a ⇔⇒ b.)
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From Powerset to Subset Collection

Definition (Powerset, equivalent formulation)

For given sets a, b, we can find a set c such that...
If f : a → b, then c contains an image of f . (i.e., Im f ∈ c .)

Definition (Subset Collection, equivalent formulation)

For given sets a, b, we can find a set c such that...
If r : a ⇒ b, then c contains a subimage of r . (i.e., there is

d ∈ c such that r : a ⇔⇒ d .)
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Defining large sets

With some pain, we can prove

Lemma (ZFC, regular cardinal)

A cardinal κ is regular if and only if for a ∈ Hκ and f : a → Hκ, we
have Im f ∈ Hκ.

By mimicking the above result, we have

Definition (CZF, regular set)

A transitive set K is regular if a ∈ K , r ∈ K and r : a ⇒ K , then
we can find some subimage b ∈ K of r (that is, r : a ⇔⇒ b.)
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Similarly, we can see

Lemma (ZFC, inaccessible cardinal)

A cardinal κ is inaccessible if and only if κ is regular and Hκ

satisfies:

1 ω ∈ Hκ, Hκ is closed under union and intersection, and

2 if a, b ∈ Hκ, then c := {Im f | f : a → b} ∈ Hκ.

Definition (CZF, inaccessible set)

A set K is inaccessible if K is regular and

1 ω ∈ K , K is closed under union and intersection, and

2 if a, b ∈ K , then we can find c ∈ K such that we can always
find a subimage of r : a ⇒ b, r ∈ K from c .
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Consistency hierarchy
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Large sets and elementary embeddings

Let us consider elementary embeddings over CZF:

Definition

Let j : V → M be an elementary embedding. A set K is a critical
point of j if K is the ‘least’ set lifted by j in the sense that

j(x) = x for all x ∈ K , and

K ∈ j(K )

Definition

A set K is critical if K is inaccessible and a critical point of an
elementary embedding j : V → M.

Question: the consistency strength of CZF with a critical cardinal.
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Two scenarios
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A Lower bound

Theorem (J., Matthews, CZF)

Let K be a critical point of a Σ0-elementary embedding j : V → M
such that K satisfies ∆0-separation. Then K |= IZF.

(Note: the above theorem does not require Separation, Strong
Collection or Set Induction for j-formulas.)

Theorem

CZF with a critical set proves the consistency of ZFC + BTEE
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Reinhardt embeddings

Definition

An inaccessible set K is a Reinhardt set if K is a critical point of
j : V → V .

Theorem

CZF with a Reinhardt cardinal proves Con(ZF +WA).
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Go beyond the Reinhardtness

Definition

An inaccessible set K is super Reinhardt if for every set a we
can find an elementary embedding j : V → V such that K is a
critical point of j and a ∈ j(K ).

An inaccessible set K is A-super Reinhardt if for every set a
we can find an A-elementary embedding j : V → V such that
K is a critical point of j and a ∈ j(K ).

Theorem

CZF with a super Reinhardt set proves the consistency of ZF with
a Reinhardt cardinal.
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Definition

V is totally Reinhardt (abbr. V is TR) is the following claim: for
every class A, there is an A-super Reinhardt set K .

Theorem

CZF with ‘V is TR’ proves all axioms of IZF. Furthermore, the
following two theories are equiconsistent:

CZF + ‘V is TR,’ and

ZF + ‘V is TR.’

(The exact definition for super/totally Reinhardt require the
formulation of constructive second-order set theory Appendix )
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A rough sketch for the proofs

The proof divides into 2-3 main steps:

1 Internal analysis of the given large set axioms. Usually
produces a model of IZF + X.

2 Double-negation translation: Friedman-styled translation,
Gambino’s Heyting-valued model, or their combinations. The
resulting lower bound is of the form Con(ZF + X)

3 If possible, derive the consistency strength in terms of ZFC
with large cardinal axioms.
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Open problems

1 Non-trivial upper bounds for the consistency strength.

2 Better lower bounds. (For example, can we derive
Con(ZFC +WA) from Con(ZF +WA)?)

3 Defining other large set notions (e.g., supercompactness and
extendibles) and analyzing their consistency strength.

4 Questions regarding machinery in the paper, e.g.,
second-order constructive set theory.
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Questions
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Thank you!
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Second-order set theory

Constructive second-order set theory

Definition (Constructive Gödel-Bernays set theory, CGB)

CGB is defined over the two-sorted languages (sets and classes)
with the following axioms:

Axioms of CZF for sets.

Every set is a class, and every element of a class is a set.

Class Extensionality: two classes are equal if they have the
same set members.

Elementary Comprehension: if ϕ(x , p,C ) is a first-order
formula with a class parameter C , then there is a class A such
that A = {x | ϕ(x , p,C )}.
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Second-order set theory

Definition (CGB, Continued)

Class Set Induction:
∀1A

[
[∀0x(∀0y ∈ x(y ∈ A) → x ∈ A)] → ∀0x(x ∈ A)

]
.

Class Strong Collection:
∀1R∀0a[R : a ⇒ V → ∃0b(R : a ⇔⇒ b)].

Definition (Intuitionistic Gödel-Bernays set theory, IGB)

IGB is obtained by adding the following axioms to CGB:

Axioms of IZF for sets.

Class Separation: if A is a class and a is a set, then A ∩ a is a
set.

Note that CGB and IGB are conservative extensions of CZF and
IZF respectively.
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Second-order set theory

The definition of an elementary embedding j : V → M requires
quantifying over formulas ϕ:

ϕ(a⃗) ⇐⇒ ϕM(j(a⃗)).

We resolve this problem by introducing the infinite conjunction
∧
.

Definition (CGB with the infinite connectives, CGB∞)

CGB∞ has the same axiom with CGB, but defined over the
first-order intuitionistic logic with the infinite connectives

∧
and

∨
.

Super Reinhardt sets and ‘V is TR’ are defined over CGB∞. Also,
CGB∞ is a conservative extension of CGB.
(Back to main .)

Hanul Jeon Cornell University

Very large set axioms over Constructive set theories


	Review: Large cardinals
	Constructive set theories
	Main results
	Q&A
	Appendix
	Second-order set theory


