Very large set axioms over Constructive set theories

Hanul Jeon
Cornell University
2022-04-29
Cornell Logic Seminar
This work is joint work with Richard Matthews (Leeds)
Table of Contents

1 Review: Large cardinals

2 Constructive set theories

3 Main results
Measurable cardinals

- Defined in terms of ultrafilters
- Scott (1961) associated measurable cardinals with **elementary embeddings**:

Definition

Let $M \subseteq V$ be a transitive class.

- $j: V \rightarrow M$ is an **elementary embedding** if j respects all first-order formulas, that is,

\[V \models \phi(\vec{a}) \iff M \models \phi(j(\vec{a})). \]

- The **critical point** $\text{crit } j$ of an elementary embedding $j: V \rightarrow M$ is the least ordinal moved by j.

Hanul Jeon
Cornell University

Very large set axioms over Constructive set theories
Theorem (Scott 1961)

A cardinal κ is measurable if and only if it is a critical point of some elementary embedding $j : V \rightarrow M$.

Theorem (Scott 1961)

Measurable cardinals do not exist in L.
Climbing to the large cardinal hierarchy

Generalizations of measurable cardinals were extensively studied by various people. (For example, Solovay-Reinhardt-Kanamori 1978).

One of these examples include:

Definition

A cardinal κ is extendible if for each α we can find an elementary embedding $j: V_{\kappa+\alpha} \rightarrow V_\zeta$ for some ζ with $\text{crit } j = \kappa$.
Definition (Rank-into-rank embeddings)

A cardinal κ is

1. I_3 if κ is a critical point of $j : V_\lambda \rightarrow V_\lambda$,
2. I_2 if κ is a critical point of $j : V \rightarrow M$ such that $V_\lambda \subseteq M$,
3. I_1 if κ is a critical point of $j : V_{\lambda+1} \rightarrow V_{\lambda+1}$,
4. I_0 if κ is a critical point of $j : L(V_{\lambda+1}) \rightarrow L(V_{\lambda+1})$,

where $\lambda = \sup_{n<\omega} j^n(\kappa)$ is the first ordinal above κ fixed by j.
Very large set axioms over Constructive set theories
Reinhardt’s dream

The attempt to find a stronger notion of large cardinal bore the notion now known as a Reinhardt cardinal.

Definition

A Reinhardt cardinal is a critical point of an elementary embedding $j : V \rightarrow V$.
Kunen (1971) proved that Reinhardt’s notion cannot be realized over ZFC:

Theorem (Kunen Inconsistency theorem, 1971)

Work over ZFC, there is no Reinhardt cardinals. In fact, there is no elementary embedding $j: V_{\lambda+2} \rightarrow V_{\lambda+2}$

It is still open whether a Reinhardt cardinal is compatible with ZF, that is, in the choiceless context.
Night Flying: Choiceless large cardinals

Some difficulties in working without the axiom of choice:

- Not all cardinal correspond to an ordinal.
- Not all successor cardinal are regular.
- Constructions and proofs become harder.
- Needs to consider more before applying the known results.
Super Reinhardtness

Definition

A cardinal κ is

- **Super Reinhardt** if for each ordinal α we can find an elementary embedding $j : V \to V$ such that $\text{crit } j = \kappa$ and $j(\kappa) > \alpha$.

- A-super Reinhardt for a class A if for each ordinal α we can find an elementary embedding for A-formulas $j : V \to V$ such that $\text{crit } j = \kappa$ and $j(\kappa) > \alpha$.

Super Reinhardtness was defined by Woodin in 1983, and extensively studied in the mid-2010s in the context of Woodin’s HOD-dichotomy.
Total Reinhardtness

Definition

- We call Ord is total Reinhardt if for every class A we can find a cardinal κ which is A-super Reinhardt.

- κ is total Reinhardt if $(V_\kappa, V_{\kappa+1}) \models \text{Ord}$ is total Reinhardt.
Theorem (Goldberg)

The following two theories are equiconsistent over ZF + DC:

1. For some ordinal λ, there is an elementary embedding $V_{\lambda+2} \rightarrow V_{\lambda+2}$
2. ZFC + I$_0$.

Theorem (Goldberg)

Work over ZF + DC, if there is an elementary embedding $j: V_{\lambda+3} \rightarrow V_{\lambda+3}$, then we have the consistency of ZFC + I$_0$.
The Wholeness axiom

Before defining the Wholeness axiom, let us analyze the definition of a Reinhardt cardinal:

Definition

ZFC with a Reinhardt cardinal is a theory comprising:

- Language: \in and a unary function symbol j,
- Axioms: Usual axioms of ZFC, with the elementarity of j, and Separation and Replacement for j-formulas.

Definition (Corazza 2000)

The Wholeness Axiom WA is obtained by restricting Replacement to formulas with no j.
We can further weaken WA as follows:

Definition

The theory Basic Theory of Elementary Embedding (BTEE) is a claim that $j: V \rightarrow V$ is an elementary embedding. BTEE does not subsume Separation and Replacement for j-formulas. That is, we obtain BTEE by dropping Separation for j-formulas from WA.

We can strengthen BTEE by adding TI$_j$, the transfinite induction for j-formulas.
Theorem (Corazza)

Work over ZFC,

1. $\mathbf{I}_3 \implies \text{Con}(\text{ZFC} + \text{WA})$ and $\text{WA} \implies$ a proper class of extendibles.

2. $0^\# \implies L \models \text{BTEE}$ and $\text{BTEE} \implies n$-ineffable cardinal for each (meta-)natural n.

(A cardinal κ is n-effable if for every $f : [\kappa]^n \to 2$ there is a stationary S subset of κ such that $f \upharpoonright [S]^n$ is constant.)
Weakening set theory: the theory ZFC^-

Definition

ZFC^- is obtained by dropping Powerset and replacing Replacement to Collection from ZFC.

Collection is the following statement:

$$\forall a[\forall x \in a \exists y \phi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \phi(x, y)].$$

- Collection is stronger than Replacement, and they are equivalent if we assume Powerset.
- ZFC^-, a mere ZFC without Powerset, is ill-behaved. (Gitman-Hamkins-Johnstone 2016)
Reinhardt embeddings over ZFC^-

Work over ZFC_j^-, the theory obtained by adding j and allowing j to the axiom schemes of ZFC^-. The following result shows a Reinhardt embedding is compatible with ZFC^-:

Theorem (Matthews)

ZFC proves the followings are equivalent:

- There is an elementary embedding $j : H_{\lambda^+} \to H_{\lambda^+}$, and
- There is an elementary embedding $k : V_{\lambda+1} \to V_{\lambda+1}$.

Especially, if λ is I_1, then (H_{λ^+}, j) is a model of ZFC_j^- with a non-trivial elementary embedding $j : V \to V$ and $V_{\text{crit}, j}$ exists.
However, a Reinhardt embedding cannot be cofinal:

Definition

An elementary embedding $j : V \rightarrow V$ is **cofinal** if for each x we can find y such that $x \in j(y)$.

Theorem (Matthews)

Work in ZFC^-, if $j : V \rightarrow V$ is a non-trivial Σ_0-elementary embedding and V_{crit_j} exists, then j cannot be cofinal.
IZF and CZF: A brief history

- (H. Friedman, 1973) Intuitionistic ZF (IZF) with the double-negation translation between IZF and ZF.
- Various attempts to formalize the foundation for Bishop-styled constructive mathematics.
- Myhill’s constructive set theory CST.
Axioms of ZF

Definition

1. Extensionality: \(a = b \iff \forall x(x \in a \iff x \in b) \).
2. Pairing: \(\{a, b\} \) exists.
3. Union: \(\bigcup a \) exists.
4. Separation: \(\{x \in a \mid \phi(x)\} \) exists,
5. Replacement: \(\{F(x) \mid x \in a\} \) exists if \(F \) is a class function.
6. Power set: \(\mathcal{P}(a) = \{x \mid x \subseteq a\} \) exists.
7. Regularity: Every set has a \(\in \)-minimal element.
8. Infinity: \(\mathbb{N} \) exists.
Axioms of IZF

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extensionality: (a = b \iff \forall x(x \in a \iff x \in b)).</td>
</tr>
<tr>
<td>2. Pairing: ({a, b}) exists.</td>
</tr>
<tr>
<td>3. Union: (\bigcup a) exists.</td>
</tr>
<tr>
<td>4. Separation: ({x \in a \mid \phi(x)}) exists.</td>
</tr>
<tr>
<td>5. Collection: if (\forall x \in a \exists y \phi(x, y)), then there is (b) such that (\forall x \in a \exists y \in b \phi(x, y)).</td>
</tr>
<tr>
<td>6. Power set: (\mathcal{P}(a) = {x \mid x \subseteq a}) exists.</td>
</tr>
<tr>
<td>7. Set Induction: (\forall a[\forall x \in a \phi(x) \rightarrow \phi(a)] \rightarrow \forall a \phi(a)).</td>
</tr>
<tr>
<td>8. Infinity: (\mathbb{N}) exists.</td>
</tr>
</tbody>
</table>
Axioms of CZF

Definition

1. **Extensionality:** \(a = b \iff \forall x(x \in a \iff x \in b) \).
2. **Pairing:** \(\{a, b\} \) exists.
3. **Union:** \(\bigcup a \) exists.
4. **Bounded Separation:** \(\{x \in a \mid \phi(x)\} \) exists if \(\phi \) is bounded.
5. **Strong Collection:** if \(\forall x \in a \exists y \phi(x, y) \), then there is \(b \) such that \(\forall x \in a \exists y \in b \phi(x, y) \) and \(\forall y \in b \exists x \in a \phi(x, y) \).
6. **Subset Collection:** There is a full subset of \(\text{mv}(a, b) \).
7. **Set Induction:** \(\forall a[\forall x \in a \phi(x) \rightarrow \phi(a)] \rightarrow \forall a \phi(a) \)
8. **Infinity:** \(\mathbb{N} \) exists.
Differences between IZF and CZF

IZF

1. Full separation
2. Powerset
3. Impredicative
4. Equiconsistent with ZF

and more...

CZF

1. Bounded separation
2. Subset collection
3. Allows type-theoretic interpretation
4. Far more weaker than ZF
Large set axioms

- Ordinals over constructive set theories are not well-behaved. (e.g., every ordinal is well-ordered \implies Excluded Middle for Δ_0-formulas, $\alpha \subseteq \beta$ does not imply $\alpha \in \beta$ or $\alpha = \beta$.)

- We define large cardinal properties over constructive set theories by mimicking the structural properties of H_κ and V_κ.
Multi-valued functions

The notion of multi-valued function provides a syntactic sugar for Collection.

Definition

Let A and B be classes. We call a relation R of domain A and codomain B a multi-valued function from A to B. (Notation: $R: A \rightrightarrows B$)

If $R: A \rightrightarrows B$ and $R^{-1}: A \rightrightarrows B$, we write $R: A \iff B$, and we call B a subimage of R.

Multi-valued functions replace functions in CZF-context.
Definition (Collection, restatement)

If $R: a \Rightarrow V$ is a first-order definable class multi-valued function with parameters, then we can find a set codomain b of R. (That is, $R: a \Rightarrow b$.)

Definition (Strong Collection, restatement)

If $R: a \Rightarrow V$ is a first-order definable class multi-valued function with parameters, then we can find a set subimage b of R. (That is, $R: a \Leftrightarrow b$.)

Definition (Subset Collection, equivalent formulation)

For given sets a, b, we can find a set c such that if $r: a \Rightarrow b$, then c contains a subimage of r. (i.e., there is $d \in c$ such that $r: a \Leftrightarrow d$.)
Defining large sets

With some pain, we can prove

Lemma (ZFC)

A cardinal κ is regular if and only if for $a \in H_\kappa$ and $f : a \to H_\kappa$, we have $\text{Im} f \subseteq H_\kappa$.

By mimicking the above result, we have

Definition

A transitive set K is regular if $a \in K$ and $r : a \Vdash K$, then we can find some subimage $b \in K$ of r (that is, $r : a \Vdash b$.)
Similarly, we can see

Lemma (ZFC)

A cardinal κ is inaccessible if and only if κ is regular and H_κ satisfies:

1. $\omega \in H_\kappa$, H_κ is closed under union and intersection, and
2. if $a, b \in H_\kappa$, then $c := \{ \text{Im} f \mid f : a \to b \} \in H_\kappa$.

Definition

A set K is inaccessible if K is regular and

1. $\omega \in K$, K is closed under union and intersection, and
2. if $a, b \in K$, then we can find $c \in K$ such that we can always find a subimage of $r : a \supseteq b$, $r \in K$ from c.
Consistency hierarchy

- PA
- KP
- ZF
- ZFC
- ZF \text{inacc.}
- RTEE
- V=L
- 0# measurable
- super-
 - extensible
- WA
- I_3
- I_1
- R,
 - SR.
 - Ord is
 - TR
- ZFC^+ + R
- (Kunen
 - Inconsistency)

\text{CZF}^+ \text{ regular,}
\text{CZF}^+ \text{ inacc,} \ldots
= KP^+ \text{ recursively}
large ord.s.
Large sets and elementary embeddings

Let us consider elementary embeddings over CZF:

Definition

Let \(j: V \rightarrow M \) be an elementary embedding. A set \(K \) is a critical point of \(j \) if \(K \) is the ‘least’ set lifted by \(j \) in the sense that \(j(x) = x \) for all \(x \in K \) and \(K \in j(K) \).

Definition

A set \(K \) is critical if \(K \) is inaccessible and a critical point of an elementary embedding \(j: V \rightarrow M \).

Question: the consistency strength of CZF with a critical cardinal.
Two scenarios

Scenario 1

Scenario 2

Very large set axioms over Constructive set theories
A Lower bound

Theorem (J., Matthews, CZF)

Let K be a critical point of a Σ_0-elementary embedding $j: V \rightarrow M$ such that K satisfies Δ_0-separation. Then $K \models IZF$.

(Note: the above theorem does not require Separation, Strong Collection or Set Induction for j-formulas.)

Theorem

CZF with a critical set proves the consistency of $ZFC + BTEE$
Reinhardt embeddings

Definition

An inaccessible set K is a Reinhardt set if K is a critical point of $j: V \rightarrow V$.

Theorem

CZF with a Reinhardt cardinal proves $\text{Con}(\text{ZF} + \text{WA})$.
Go beyond the Reinhardtness

Definition

- An inaccessible set K is **super Reinhardt** if for every set a we can find an elementary embedding $j : V \to V$ such that K is a critical point of j and $a \in j(K)$.

- An inaccessible set K is **K-super Reinhardt** if for every set a we can find an A-elementary embedding $j : V \to V$ such that K is a critical point of j and $a \in j(K)$.

Theorem

CZF with a super Reinhardt set proves the consistency of ZF with a Reinhardt cardinal.
Definition

V is total Reinhardt (abbr. V is TR) is the following claim: for every class A, there is an A-super Reinhardt set K.

Theorem

CZF with ‘V is TR’ proves all axioms of IZF. Furthermore, the following two theories are equiconsistent:

- CZF + ‘V is TR,’ and
- ZF + ‘V is TR.’

(The exact definition for super/total Reinhardtness require the formulation of constructive second-order set theory.)
Review: Large cardinals

Constructive set theories

Main results

Q&A

Very large set axioms over Constructive set theories
A rough sketch for the proofs

The proof divides into 2-3 main steps:

1. Internal analysis of the given large set axiom. Usually produces a model of IZF + X.

2. Double-negation translation: Friedman-styled translation, Gambino’s Heyting-valued model, or their combinations. The resulting lower bound is of the form Con(ZF + X)

3. If possible, derive the consistency strength in terms of ZFC with large cardinal axioms.
Open problems

1. Non-trivial upper bounds for the consistency strength.
2. Better lower bounds. (For example, can we derive \(\text{Con}(\text{ZFC} + \text{WA}) \) from \(\text{Con}(\text{ZF} + \text{WA}) \)?)
3. Defining other large set notions (e.g., supercompactness and extendibles) and analyzing their consistency strength.
4. Questions regarding machinery in the paper, e.g., second-order constructive set theory.
Questions

Very large set axioms over Constructive set theories
Thank you!
Constructive second-order set theory

Definition (Constructive Gödel-Bernays set theory, CGB)

CGB is defined over the two-sorted languages (sets and classes) with the following axioms:

- Axioms of CZF for sets.
- Every set is a class, and every element of a class is a set.
- Class Extensionality: two classes are equal if they have the same set members.
- Elementary Comprehension: if $\phi(x, p, C)$ is a first-order formula with a class parameter C, then there is a class A such that $A = \{x \mid \phi(x, p, C)\}$.
Definition (CGB, Continued)

- **Class Set Induction:**
 \[\forall^1 A\left[\forall^0 x (\forall^0 y \in x (y \in A) \to x \in A)\right] \to \forall^0 x (x \in A) \].

- **Class Strong Collection:**
 \[\forall^1 R \forall^0 a [R : a \Rightarrow V \to \exists^0 b (R : a \Leftrightarrow b)] \].

Definition (Intuitionistic Gödel-Bernays set theory, IGB)

IGB is obtained by adding the following axioms to CGB:

- Axioms of IZF for sets.
- **Class Separation:** if \(A \) is a class and \(a \) is a set, then \(A \cap a \) is a set.

Note that CGB and IGB are conservative extensions of CZF and IZF respectively.
The definition of an elementary embedding $j: V \to M$ requires quantifying over formulas ϕ:

$$\phi(\vec{a}) \iff \phi^M(j(\vec{a})).$$

We resolve this problem by introducing the infinite conjunction \land.

Definition (CGB with the infinite connectives, CGB_∞)

CGB_∞ has the same axiom with CGB, but defined over the first-order intuitionistic logic with the infinite connectives \land and \lor.

Super Reinhardtness and ‘V is TR’ is defined over CGB_∞. Also, CGB_∞ is a conservative extension of CGB.

(Back to main.)